File size: 6,940 Bytes
50a83a4
ca1f90f
 
884a837
ca1f90f
884a837
 
50a83a4
884a837
ca1f90f
 
884a837
 
3b14a4f
884a837
 
 
ca1f90f
 
b86ee7f
50a83a4
 
 
77f12ff
 
50a83a4
77f12ff
50a83a4
ca1f90f
50a83a4
 
884a837
319d641
 
884a837
77f12ff
884a837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1f90f
884a837
 
 
 
 
 
ca1f90f
 
 
 
 
 
 
50a83a4
 
 
 
 
 
884a837
50a83a4
884a837
50a83a4
ca1f90f
 
 
 
50a83a4
 
 
ca1f90f
 
 
 
 
50a83a4
ca1f90f
 
 
 
 
 
 
 
50a83a4
ca1f90f
 
 
 
 
 
 
 
 
 
 
 
 
884a837
ca1f90f
 
884a837
 
319d641
 
50a83a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319d641
50a83a4
 
 
 
 
319d641
 
 
 
 
 
50a83a4
319d641
 
50a83a4
 
319d641
884a837
 
 
77f12ff
50a83a4
 
 
319d641
50a83a4
 
 
 
 
 
 
 
319d641
 
 
 
50a83a4
 
 
319d641
ade451a
 
 
50a83a4
 
319d641
 
 
 
50a83a4
 
884a837
 
 
 
 
319d641
 
50a83a4
 
884a837
319d641
 
50a83a4
 
 
 
 
 
 
 
 
 
 
884a837
50a83a4
884a837
 
 
319d641
50a83a4
884a837
 
 
3b14a4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import asyncio
import io
from io import BytesIO
import gradio as gr
import requests
import torch
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from PIL import Image, ImageOps, ImageDraw, ImageFont
import PIL
import replicate
import os

# cuda cpu
device_name = 'cpu'
device = torch.device(device_name)

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model_clip = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)

os.environ['REPLICATE_API_TOKEN'] = '77d68d98d66117c680760543799d97177d6aa722'
model = replicate.models.get("stability-ai/stable-diffusion-inpainting")
version = model.versions.get("c28b92a7ecd66eee4aefcd8a94eb9e7f6c3805d5f06038165407fb5cb355ba67")

sf_prompt_1 = "sunflowers, old bridge, mountain, grass"
sf_neg_prompt_1 = "animal"

sf_prompt_2 = "fire, landscape"
sf_neg_prompt_2 = "animal"

template1 = Image.open("templates/template1.png").resize((512, 512))
template2 = Image.open("templates/template2.png").resize((512, 512))

fontMain = ImageFont.truetype(font="fonts/arial.ttf", size=32)
fontSecond = ImageFont.truetype(font="fonts/arial.ttf", size=18)


def numpy_to_pil(images):
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")

    if images.shape[-1] == 1:
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def get_mask(text, image):
    inputs = processor(
        text=[text], images=[image], padding="max_length", return_tensors="pt"
    ).to(device)

    outputs = model_clip(**inputs)
    mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()

    mask_pil = numpy_to_pil(mask)[0].resize(image.size)
    return mask_pil


def image_to_byte_array(image: Image) -> bytes:
  imgByteArr = io.BytesIO()
  image.save(imgByteArr, format='PNG')
  #imgByteArr = imgByteArr.getvalue()
  return imgByteArr


def add_template(image, template):
    image.paste(template, (0, 0), mask=template)
    return image


async def predict(prompt, negative_prompt, image, mask_img):
    image = image.convert("RGB").resize((512, 512))
    mask_image = mask_img.convert("RGB").resize((512, 512))
    mask_image = ImageOps.invert(mask_image)

    inputs = {
        # Input prompt
        'prompt': prompt,

        # Specify things to not see in the output
         'negative_prompt': negative_prompt,

        # Inital image to generate variations of. Supproting images size with
        # 512x512
        'image': image_to_byte_array(image),

        # Black and white image to use as mask for inpainting over the image
        # provided. White pixels are inpainted and black pixels are preserved
        'mask': image_to_byte_array(mask_image),

        # Number of images to output. Higher number of outputs may OOM.
        # Range: 1 to 8
        'num_outputs': 1,

        # Number of denoising steps
        # Range: 1 to 500
        'num_inference_steps': 25,

        # Scale for classifier-free guidance
        # Range: 1 to 20
        'guidance_scale': 7.5,

        # Random seed. Leave blank to randomize the seed
        # 'seed': ...,
    }

    output = version.predict(**inputs)

    response = requests.get(output[0])
    img_final = Image.open(BytesIO(response.content))
    mask = mask_image.convert('L')
    PIL.Image.composite(img_final, image, mask)
    return (img_final)


async def predicts(sf_prompt_1, sf_neg_prompt_1, sf_prompt_2, sf_neg_prompt_2, image, image_numpy, mask_img, only_test):
    if only_test:
        img1 = Image.fromarray(image_numpy).convert("RGB").resize((512, 512))
        img2 = Image.fromarray(image_numpy).convert("RGB").resize((512, 512))
        return img1, img2

    task1 = asyncio.create_task(predict(sf_prompt_1, sf_neg_prompt_1, image, mask_img))
    await asyncio.sleep(5)
    task2 = asyncio.create_task(predict(sf_prompt_2, sf_neg_prompt_2, image, mask_img))

    await task1
    await task2

    img1 = task1.result()
    img2 = task2.result()

    return img1, img2


def draw_text(img, template_coords, main_text, second_text):
    x1 = template_coords['x1']
    y1 = template_coords['y1']
    x2 = template_coords['x2']
    y2 = template_coords['y2']

    if '\\n' in main_text:
        main_text = main_text.replace('\\n', '\n')

    if '\\n' in second_text:
        second_text = second_text.replace('\\n', '\n')

    draw = ImageDraw.Draw(img)
    draw.text((x1, y1), main_text, fill=(255, 255, 255), font=fontMain)
    draw.text((x2, y2), second_text, fill=(255, 255, 255), font=fontSecond)


def inference(obj2mask, image_numpy, main_text, second_text, only_test):
    generator = torch.Generator()
    generator.manual_seed(int(52362))

    image = Image.fromarray(image_numpy).convert("RGB").resize((512, 512))

    mask_img = get_mask(obj2mask, image)

    img1, img2 = asyncio.run(predicts(sf_prompt_1, sf_neg_prompt_1, sf_prompt_2, sf_neg_prompt_2, image, image_numpy, mask_img, only_test))

    img1_1 = add_template(img1.copy(), template1.copy())
    img1_2 = add_template(img1.copy(), template2.copy())

    img2_1 = add_template(img2.copy(), template1.copy())
    img2_2 = add_template(img2.copy(), template2.copy())

    template1_coords = {
        'x1': 700/2,
        'y1': 630/2,
        'x2': 420/2,
        'y2': 800/2
    }

    template2_coords = {
        'x1': 30/2,
        'y1': 30/2,
        'x2': 300/2,
        'y2': 740/2
    }

    draw_text(img1_1, template1_coords, main_text, second_text)
    draw_text(img1_2, template2_coords, main_text, second_text)
    draw_text(img2_1, template1_coords, main_text, second_text)
    draw_text(img2_2, template2_coords, main_text, second_text)

    return [img1_1, img1_2, img2_1, img2_2]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            txt_1 = gr.Textbox(label="Texto principal da propaganda", value="Promoção\nImperdível", lines=2)
            txt_2 = gr.Textbox(label="Texto secundário da propaganda", value="Até 50% para alguns produtos\nEntre em contato com um dos\nnossos vendedores", lines=3)

            mask = gr.Textbox(label="Descrição da imagem", value="shoe")
            intput_img = gr.Image()
            run = gr.Button(value="Gerar")
            chk_test = gr.Checkbox(label='Gerar Prévia')
    with gr.Row():
        with gr.Column():
            output_img1_1 = gr.Image()

        with gr.Column():
            output_img1_2 = gr.Image()

    with gr.Row():
        with gr.Column():
            output_img2_1 = gr.Image()

        with gr.Column():
            output_img2_2 = gr.Image()

    run.click(
        inference,
        inputs=[mask, intput_img, txt_1, txt_2, chk_test],
        outputs=[output_img1_1, output_img1_2, output_img2_1, output_img2_2],
    )

demo.queue(concurrency_count=1)
demo.launch()