Spaces:
Sleeping
Sleeping
File size: 6,792 Bytes
4d6e8c2 3b09640 61985ff 4d6e8c2 3b09640 4d6e8c2 61985ff 1c33274 70f5f26 8895a62 61985ff 3b09640 1c33274 70f5f26 4d6e8c2 3b09640 70f5f26 3b09640 70f5f26 3b09640 4d6e8c2 3b09640 4d6e8c2 3b09640 3ae7280 3b09640 ea3aa78 41e94b4 74177a8 933c912 61985ff 3b09640 1e16d37 ea3aa78 3b09640 1e16d37 933c912 ea3aa78 3b09640 1e16d37 ea3aa78 933c912 ea3aa78 289d26d ea3aa78 1e16d37 933c912 1e16d37 ea3aa78 1e16d37 61985ff ea3aa78 0d55441 1e16d37 2478bb3 ea3aa78 1e16d37 ea3aa78 1e16d37 289d26d 3b09640 4d6e8c2 3b09640 70f5f26 3b09640 4d6e8c2 70f5f26 4d6e8c2 3b09640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score
import random
import os
from ultralytics import YOLO # Import YOLO
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "YOLO Smoke Detection"
ROUTE = "/image"
yolo_model = YOLO("yolo11_vl_20012025_frugalAIchal.pt")
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i+1:i+5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width/2
y1 = y_center - height/2
x2 = x_center + width/2
y2 = y_center + height/2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
@router.post(ROUTE, tags=["Image Task"],
description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
"""
Evaluate image classification and object detection for forest fire smoke.
Current Model: Random Baseline
- Makes random predictions for both classification and bounding boxes
- Used as a baseline for comparison
Metrics:
- Classification accuracy: Whether an image contains smoke or not
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
"""
# Get space info
username, space_url = get_space_info()
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = dataset["val"]#train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline with your model inference
#--------------------------------------------------------------------------------------------
predictions = []
true_labels = []
pred_boxes = []
true_boxes_list = []
for example in test_dataset:
# Extract image and annotations
image = example["image"]
annotation = example.get("annotations", "").strip()
has_smoke = len(annotation) > 0
true_labels.append(1 if has_smoke else 0)
if has_smoke:
image_true_boxes = parse_boxes(annotation)
if image_true_boxes:
true_boxes_list.append(image_true_boxes)
else:
true_boxes_list.append([])
else:
true_boxes_list.append([])
results = yolo_model .predict(image, verbose=False) # INFERENCE - prediction
if len(results[0].boxes):
pred_box = results[0].boxes.xywhn[0].cpu().numpy().tolist()
predictions.append(1)
pred_boxes.append(pred_box)
else:
predictions.append(0)
pred_boxes.append([])
filtered_true_boxes_list = []
filtered_pred_boxes = []
for true_boxes, pred_boxes_entry in zip(true_boxes_list, pred_boxes): # Only see when annotation(s) is/are both on true label and prediction
if true_boxes and pred_boxes_entry:
filtered_true_boxes_list.append(true_boxes)
filtered_pred_boxes.append(pred_boxes_entry)
true_boxes_list = filtered_true_boxes_list
pred_boxes = filtered_pred_boxes
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate classification accuracy
classification_accuracy = accuracy_score(true_labels, predictions)
# Calculate mean IoU for object detection (only for images with smoke)
# For each image, we compute the max IoU between the predicted box and all true boxes
ious = []
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
max_iou = compute_max_iou(true_boxes, pred_box)
ious.append(max_iou)
mean_iou = float(np.mean(ious)) if ious else 0.0
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"classification_accuracy": float(classification_accuracy),
"mean_iou": mean_iou,
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |