tom-b974 commited on
Commit
0b67fb6
·
verified ·
1 Parent(s): 933c912

Update tasks/image.py

Browse files
Files changed (1) hide show
  1. tasks/image.py +8 -7
tasks/image.py CHANGED
@@ -104,9 +104,10 @@ async def evaluate_image(request: ImageEvaluationRequest):
104
  #--------------------------------------------------------------------------------------------
105
  predictions = []
106
  true_labels = []
107
- pred_boxes = []
108
- true_boxes_list = []
109
-
 
110
  for example in test_dataset:
111
  # Extract image and annotations
112
  image = example["image"]
@@ -119,19 +120,19 @@ async def evaluate_image(request: ImageEvaluationRequest):
119
  # Parse ground truth boxes if smoke is present
120
  if has_smoke:
121
  image_true_boxes = parse_boxes(annotation)
122
- true_boxes_list.append(image_true_boxes)
123
  else:
124
  true_boxes_list.append([]) # No ground truth boxes
125
 
126
  # Perform YOLO inference
127
- results = yolo_model.predict(image)
128
 
129
  # Extract predicted box if predictions exist
130
  if len(results[0].boxes):
131
- pred_box = results[0].boxes.xywh[0].cpu().numpy().tolist() # Take the first box
132
  predictions.append(1) # Predicted smoke
133
  else:
134
- pred_box = [] # No prediction for this image
135
  predictions.append(0) # Predicted no smoke
136
 
137
  # Append the predicted box (empty if no predictions)
 
104
  #--------------------------------------------------------------------------------------------
105
  predictions = []
106
  true_labels = []
107
+ pred_boxes = [] # Flattened list of predicted boxes
108
+ true_boxes_list = [] # Flattened list of ground truth boxes
109
+
110
+
111
  for example in test_dataset:
112
  # Extract image and annotations
113
  image = example["image"]
 
120
  # Parse ground truth boxes if smoke is present
121
  if has_smoke:
122
  image_true_boxes = parse_boxes(annotation)
123
+ true_boxes_list.append(image_true_boxes if image_true_boxes else [])
124
  else:
125
  true_boxes_list.append([]) # No ground truth boxes
126
 
127
  # Perform YOLO inference
128
+ results = model.predict(image)
129
 
130
  # Extract predicted box if predictions exist
131
  if len(results[0].boxes):
132
+ pred_box = results[0].boxes.xywh[0].cpu().numpy().tolist()
133
  predictions.append(1) # Predicted smoke
134
  else:
135
+ pred_box = [] # No predictions for this image
136
  predictions.append(0) # Predicted no smoke
137
 
138
  # Append the predicted box (empty if no predictions)