File size: 5,171 Bytes
1ed4acb
74dec5e
 
 
 
816fe7b
1ed4acb
45af05b
 
 
22d404b
 
6a50739
ab9c147
74dec5e
 
 
 
 
1ed4acb
74dec5e
 
 
 
 
 
 
 
0ed54e6
b019779
d3fd89d
f3e1197
 
 
 
 
 
381e9cd
f3e1197
 
f074365
f3e1197
 
 
 
7c817a1
f3e1197
7c817a1
f3e1197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c817a1
f3e1197
 
 
 
 
 
 
 
 
 
 
 
7c817a1
f3e1197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381e9cd
5edd69e
ab9c147
 
 
 
 
7c817a1
4b58467
ab9c147
 
381e9cd
ab9c147
381e9cd
b019779
7c817a1
f3e1197
 
 
 
3c31877
 
f3e1197
b77b847
f3e1197
d30e80d
 
 
d4e098f
 
74dec5e
 
b80583c
 
1bba452
74dec5e
1688328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import numpy as np
import cv2 as cv
import requests
import time
import os

host = os.environ.get("host")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
system = os.environ.get("system")
auth = os.environ.get("auth")
data = None
model = None
image = None
prediction = None
labels = None

print('START')
np.set_printoptions(suppress=True)

data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

with open("labels.txt", "r") as file:
    labels = file.read().splitlines()

def classify(Textbox, Image, Textbox2, Textbox3):
    if Textbox3 == code:
        if Image is not None:
            output = []
            image_data = np.array(Image)
            image_data = cv.resize(image_data, (224, 224))
            image_array = np.asarray(image_data)
            normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
            data[0] = normalized_image_array
        
            import tensorflow as tf
            model = tf.keras.models.load_model('keras_model.h5')
        
            prediction = model.predict(data)
            
            max_label_index = None
            max_prediction_value = -1
    
            print('Prediction')
    
            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(Textbox)
            messages = [
                {"role": "system", "content": system},
            ]
            print("Messages",messages)
            
            # for i in Textbox2_edited:
            #     messages.append(
            #         {"role": "user", "content": i}
            #     )
            print("messages after appending:", messages)
        
            for i, label in enumerate(labels):
                prediction_value = float(prediction[0][i])
                rounded_value = round(prediction_value, 2)
                print(f'{label}: {rounded_value}')
        
                if prediction_value > max_prediction_value:
                    max_label_index = i
                    max_prediction_value = prediction_value 
        
            if max_label_index is not None:
                max_label = labels[max_label_index].split(' ', 1)[1]
                print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
        
                time.sleep(1)
                print("\nWays to dispose of this waste: " + max_label)
                messages.append({"role": "user", "content": Textbox})
                messages.append({"role": "user", "content": content + " " + max_label})
    
                headers = {
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {auth}"
                }
        
                response = requests.post(host, headers=headers, json={
                    "messages":messages,
                    "model":model_llm
                }).json()
                
                reply = response["choices"][0]["message"]["content"]
                messages.append({"role": "assistant", "content": reply})
    
                output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
            
            return output

        else:
            output = []
            
            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(Textbox)
            messages = [
                {"role": "system", "content": system},
            ]
            print("Messages",messages)
            
            for i in Textbox2_edited:
                messages.append(
                    {"role": "user", "content": i}
                )
            print("messages after appending:", messages)
        
            time.sleep(1)
            messages.append({"role": "user", "content": Textbox})

            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {auth}"
            }
    
            response = requests.post(host, headers=headers, json={
                "messages":messages,
                "model":model_llm
            }).json()
            
            reply = response["choices"][0]["message"]["content"]
            messages.append({"role": "assistant", "content": reply})

            output.append({"Mode":"Chat","content": reply})
            
            return output

    else:
        return "Unauthorized"
        
user_inputs = [
    gr.Textbox(label="User Input", type="text"),
    gr.Image(),
    gr.Textbox(label="Textbox2", type="text"),
    gr.Textbox(label="Textbox3", type="password")
]

iface = gr.Interface(
    fn=classify,
    inputs=user_inputs,
    outputs=gr.outputs.JSON(),
    title="Classifier",
)
iface.launch()