Spaces:
Running
Running
# import gradio as gr | |
# import numpy as np | |
# import cv2 as cv | |
# import requests | |
# import time | |
# import os | |
# host = os.environ.get("host") | |
# code = os.environ.get("code") | |
# model_llm = os.environ.get("model") | |
# content = os.environ.get("content") | |
# state = os.environ.get("state") | |
# system = os.environ.get("system") | |
# auth = os.environ.get("auth") | |
# data = None | |
# model = None | |
# image = None | |
# prediction = None | |
# labels = None | |
# print('START') | |
# np.set_printoptions(suppress=True) | |
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# with open("labels.txt", "r") as file: | |
# labels = file.read().splitlines() | |
# messages = [ | |
# {"role": "system", "content": system} | |
# ] | |
# def classify(UserInput, Image, Textbox2, Textbox3): | |
# if Textbox3 == code: | |
# print("Image: ", Image) | |
# if Image is not None: | |
# output = [] | |
# image_data = np.array(Image) | |
# image_data = cv.resize(image_data, (224, 224)) | |
# image_array = np.asarray(image_data) | |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
# data[0] = normalized_image_array | |
# import tensorflow as tf | |
# model = tf.keras.models.load_model('keras_model.h5') | |
# prediction = model.predict(data) | |
# max_label_index = None | |
# max_prediction_value = -1 | |
# print('Prediction') | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# messages.append({"role": "user", "content": UserInput}) | |
# for i, label in enumerate(labels): | |
# prediction_value = float(prediction[0][i]) | |
# rounded_value = round(prediction_value, 2) | |
# print(f'{label}: {rounded_value}') | |
# if prediction_value > max_prediction_value: | |
# max_label_index = i | |
# max_prediction_value = prediction_value | |
# if max_label_index is not None: | |
# max_label = labels[max_label_index].split(' ', 1)[1] | |
# max_rounded_prediction = round(max_prediction_value, 2) | |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}') | |
# time.sleep(1) | |
# if max_rounded_prediction > 0.5: | |
# print("\nWays to dispose of this waste: " + max_label) | |
# messages.append({"role": "user", "content": content + " " + max_label}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply}) | |
# elif max_rounded_prediction < 0.5: | |
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."}) | |
# return output | |
# else: | |
# output = [] | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# for i in Textbox2_edited: | |
# messages.append( | |
# {"role": "user", "content": i} | |
# ) | |
# print("messages after appending:", messages) | |
# time.sleep(1) | |
# messages.append({"role": "user", "content": UserInput}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Chat", "content": reply}) | |
# return output | |
# else: | |
# return "Unauthorized" | |
# user_inputs = [ | |
# gr.Textbox(label="User Input", type="text"), | |
# gr.Image(), | |
# gr.Textbox(label="Textbox2", type="text"), | |
# gr.Textbox(label="Textbox3", type="password") | |
# ] | |
# iface = gr.Interface( | |
# fn=classify, | |
# inputs=user_inputs, | |
# outputs=gr.outputs.JSON(), | |
# title="Classifier", | |
# ) | |
# iface.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import cv2 as cv | |
# import requests | |
# import time | |
# import os | |
# host = os.environ.get("host") | |
# code = os.environ.get("code") | |
# model_llm = os.environ.get("model") | |
# content = os.environ.get("content") | |
# state = os.environ.get("state") | |
# system = os.environ.get("system") | |
# auth = os.environ.get("auth") | |
# auth2 = os.environ.get("auth2") | |
# data = None | |
# model = None | |
# image = None | |
# prediction = None | |
# labels = None | |
# print('START') | |
# np.set_printoptions(suppress=True) | |
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# with open("labels.txt", "r") as file: | |
# labels = file.read().splitlines() | |
# messages = [ | |
# {"role": "system", "content": system} | |
# ] | |
# def classify(platform,UserInput, Image, Textbox2, Textbox3): | |
# if Textbox3 == code: | |
# if Image is not None: | |
# output = [] | |
# headers = { | |
# "Authorization": f"Bearer {auth2}" | |
# } | |
# if platform == "wh": | |
# get_image = requests.get(Image, headers=headers) | |
# print(get_image.content) | |
# elif platform == "web": | |
# print("WEB") | |
# else: | |
# pass | |
# image_data = np.array(get_image) | |
# image_data = cv.resize(image_data, (224, 224)) | |
# image_array = np.asarray(image_data) | |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
# data[0] = normalized_image_array | |
# import tensorflow as tf | |
# model = tf.keras.models.load_model('keras_model.h5') | |
# prediction = model.predict(data) | |
# max_label_index = None | |
# max_prediction_value = -1 | |
# print('Prediction') | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# messages.append({"role": "user", "content": UserInput}) | |
# for i, label in enumerate(labels): | |
# prediction_value = float(prediction[0][i]) | |
# rounded_value = round(prediction_value, 2) | |
# print(f'{label}: {rounded_value}') | |
# if prediction_value > max_prediction_value: | |
# max_label_index = i | |
# max_prediction_value = prediction_value | |
# if max_label_index is not None: | |
# max_label = labels[max_label_index].split(' ', 1)[1] | |
# max_rounded_prediction = round(max_prediction_value, 2) | |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}') | |
# time.sleep(1) | |
# if max_rounded_prediction > 0.5: | |
# print("\nWays to dispose of this waste: " + max_label) | |
# messages.append({"role": "user", "content": content + " " + max_label}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply}) | |
# elif max_rounded_prediction < 0.5: | |
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."}) | |
# return output | |
# else: | |
# output = [] | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# for i in Textbox2_edited: | |
# messages.append( | |
# {"role": "user", "content": i} | |
# ) | |
# print("messages after appending:", messages) | |
# time.sleep(1) | |
# messages.append({"role": "user", "content": UserInput}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Chat", "content": reply}) | |
# return output | |
# else: | |
# return "Unauthorized" | |
# user_inputs = [ | |
# gr.Textbox(label="Platform", type="text"), | |
# gr.Textbox(label="User Input", type="text"), | |
# gr.Textbox(label="Image", type="text"), | |
# gr.Textbox(label="Textbox2", type="text"), | |
# gr.Textbox(label="Textbox3", type="password") | |
# ] | |
# iface = gr.Interface( | |
# fn=classify, | |
# inputs=user_inputs, | |
# outputs=gr.outputs.JSON(), | |
# title="Classifier", | |
# ) | |
# iface.launch() | |
############################### MOST WORKING | |
# import gradio as gr | |
# import numpy as np | |
# import cv2 as cv | |
# import requests | |
# import io | |
# from PIL import Image | |
# import os | |
# import tensorflow as tf | |
# import random | |
# host = os.environ.get("host") | |
# code = os.environ.get("code") | |
# model_llm = os.environ.get("model") | |
# content = os.environ.get("content") | |
# state = os.environ.get("state") | |
# system = os.environ.get("system") | |
# auth = os.environ.get("auth") | |
# auth2 = os.environ.get("auth2") | |
# data = None | |
# np.set_printoptions(suppress=True) | |
# model = tf.keras.models.load_model('keras_model.h5') | |
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# with open("labels.txt", "r") as file: | |
# labels = file.read().splitlines() | |
# messages = [ | |
# {"role": "system", "content": system} | |
# ] | |
# def classify(platform, UserInput, Images, Textbox2, Textbox3): | |
# if Textbox3 == code: | |
# imageData = None | |
# if Images != "None": | |
# output = [] | |
# headers = { | |
# "Authorization": f"Bearer {auth2}" | |
# } | |
# if platform == "wh": | |
# get_image = requests.get(Images, headers=headers) | |
# if get_image.status_code == 200: | |
# image_data = get_image.content | |
# elif platform == "web": | |
# print("WEB") | |
# else: | |
# pass | |
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR) | |
# image = cv.resize(image, (224, 224)) | |
# image_array = np.asarray(image) | |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
# data[0] = normalized_image_array | |
# prediction = model.predict(data) | |
# max_label_index = None | |
# max_prediction_value = -1 | |
# print('Prediction') | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# print(UserInput) | |
# print("appending") | |
# messages.append({"role": "user", "content": UserInput}) | |
# for i, label in enumerate(labels): | |
# prediction_value = float(prediction[0][i]) | |
# rounded_value = round(prediction_value, 2) | |
# print(f'{label}: {rounded_value}') | |
# if prediction_value > max_prediction_value: | |
# max_label_index = i | |
# max_prediction_value = prediction_value | |
# if max_label_index is not None: | |
# max_label = labels[max_label_index].split(' ', 1)[1] | |
# max_rounded_prediction = round(max_prediction_value, 2) | |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}') | |
# if max_rounded_prediction > 0.5: | |
# print("\nWays to dispose of this waste: " + max_label) | |
# messages.append({"role": "user", "content": content + " " + max_label}) | |
# # messages.append({"role": "user", "content": max_label}) | |
# print("IMAGE messages after appending:", messages) | |
# header = { | |
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36", | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# try: | |
# response = requests.post(host, headers=header, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# print("RESPONSE TRY",response) | |
# reply = response["choices"][0]["message"]["content"] | |
# # messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply}) | |
# except: | |
# print("DOESN'T WORK") | |
# elif max_rounded_prediction < 0.5: | |
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"}) | |
# return output | |
# elif Images == "None": | |
# output = [] | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# for i in Textbox2_edited: | |
# messages.append({"role": "user", "content": i}) | |
# print("messages after appending:", messages) | |
# messages.append({"role": "user", "content": UserInput}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# # messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Chat", "content": reply}) | |
# return output | |
# else: | |
# return "Unauthorized" | |
# user_inputs = [ | |
# gr.Textbox(label="Platform", type="text"), | |
# gr.Textbox(label="User Input", type="text"), | |
# gr.Textbox(label="Image", type="text"), | |
# gr.Textbox(label="Textbox2", type="text"), | |
# gr.Textbox(label="Textbox3", type="password") | |
# ] | |
# iface = gr.Interface( | |
# fn=classify, | |
# inputs=user_inputs, | |
# outputs=gr.outputs.JSON(), | |
# title="Classifier", | |
# ) | |
# iface.launch() | |
############## TEST | |
import gradio as gr | |
import numpy as np | |
import cv2 as cv | |
import requests | |
import io | |
from PIL import Image | |
import os | |
import tensorflow as tf | |
import random | |
host = os.environ.get("host") | |
code = os.environ.get("code") | |
model_llm = os.environ.get("model") | |
content = os.environ.get("content") | |
state = os.environ.get("state") | |
system = os.environ.get("system") | |
auth = os.environ.get("auth") | |
auth2 = os.environ.get("auth2") | |
data = None | |
np.set_printoptions(suppress=True) | |
model = tf.keras.models.load_model('keras_model.h5') | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
with open("labels.txt", "r") as file: | |
labels = file.read().splitlines() | |
messages = [ | |
{"role": "system", "content": system} | |
] | |
def classify(platform, UserInput, Images, Textbox2, Textbox3): | |
if UserInput.lower() == "clear history": | |
messages.clear() | |
messages.append( | |
{"role": "system", "content": system} | |
) | |
if Textbox3 == code: | |
imageData = None | |
if Images != "None": | |
output = [] | |
headers = { | |
"Authorization": f"Bearer {auth2}" | |
} | |
if platform == "wh": | |
get_image = requests.get(Images, headers=headers) | |
if get_image.status_code == 200: | |
image_data = get_image.content | |
elif platform == "web": | |
# print("WEB") | |
url = requests.get(Images) | |
image_data = url.content | |
else: | |
pass | |
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR) | |
image = cv.resize(image, (224, 224)) | |
image_array = np.asarray(image) | |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
data[0] = normalized_image_array | |
prediction = model.predict(data) | |
max_label_index = None | |
max_prediction_value = -1 | |
print('Prediction') | |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
Textbox2 = Textbox2.split(",") | |
Textbox2_edited = [x.strip() for x in Textbox2] | |
Textbox2_edited = list(Textbox2_edited) | |
Textbox2_edited.append(UserInput) | |
print(UserInput) | |
print("appending") | |
messages.append({"role": "user", "content": UserInput}) | |
# Pop earlier messages if there are more than 10 | |
# if UserInput.lower() == "clear history": | |
# while len(messages) > 10: | |
# messages.pop(0) | |
for i, label in enumerate(labels): | |
prediction_value = float(prediction[0][i]) | |
rounded_value = round(prediction_value, 2) | |
print(f'{label}: {rounded_value}') | |
if prediction_value > max_prediction_value: | |
max_label_index = i | |
max_prediction_value = prediction_value | |
if max_label_index is not None: | |
max_label = labels[max_label_index].split(' ', 1)[1] | |
max_rounded_prediction = round(max_prediction_value, 2) | |
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}') | |
if max_rounded_prediction > 0.5: | |
print("\nWays to dispose of this waste: " + max_label) | |
messages.append({"role": "user", "content": content + " " + max_label}) | |
print("IMAGE messages after appending:", messages) | |
header = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36", | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {auth}" | |
} | |
try: | |
response = requests.post(host, headers=header, json={ | |
"messages": messages, | |
"model": model_llm | |
}).json() | |
print("RESPONSE TRY", response) | |
reply = response["choices"][0]["message"]["content"] | |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply}) | |
except: | |
print("DOESN'T WORK") | |
elif max_rounded_prediction < 0.5: | |
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"}) | |
return output | |
elif Images == "None": | |
output = [] | |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
Textbox2 = Textbox2.split(",") | |
Textbox2_edited = [x.strip() for x in Textbox2] | |
Textbox2_edited = list(Textbox2_edited) | |
Textbox2_edited.append(UserInput) | |
for i in Textbox2_edited: | |
messages.append({"role": "user", "content": i}) | |
print("messages after appending:", messages) | |
messages.append({"role": "user", "content": UserInput}) | |
# Pop earlier messages if there are more than 10 | |
# if UserInput.lower() == "clear history": | |
# while len(messages) > 10: | |
# messages.pop(0) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {auth}" | |
} | |
try: | |
response = requests.post(host, headers=headers, json={ | |
"messages": messages, | |
"model": model_llm | |
}).json() | |
reply = response["choices"][0]["message"]["content"] | |
except: | |
reply = "Maximum messages: 15. Please clear your history and Try Again!" | |
output.append({"Mode": "Chat", "content": reply}) | |
return output | |
else: | |
return "Unauthorized" | |
user_inputs = [ | |
gr.Textbox(label="Platform", type="text"), | |
gr.Textbox(label="User Input", type="text"), | |
gr.Textbox(label="Image", type="text"), | |
gr.Textbox(label="Textbox2", type="text"), | |
gr.Textbox(label="Textbox3", type="password") | |
] | |
iface = gr.Interface( | |
fn=classify, | |
inputs=user_inputs, | |
outputs=gr.outputs.JSON(), | |
title="Classifier", | |
) | |
iface.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import cv2 as cv | |
# import requests | |
# import random | |
# import os | |
# import tensorflow as tf | |
# import base64 | |
# host = os.environ.get("host") | |
# code = os.environ.get("code") | |
# model_llm = os.environ.get("model") | |
# content = os.environ.get("content") | |
# state = os.environ.get("state") | |
# system = os.environ.get("system") | |
# auth = os.environ.get("auth") | |
# auth2 = os.environ.get("auth2") | |
# data = None | |
# np.set_printoptions(suppress=True) | |
# # Load the model outside of the function | |
# model = tf.keras.models.load_model('keras_model.h5') | |
# # Load labels from a file | |
# with open("labels.txt", "r") as file: | |
# labels = file.read().splitlines() | |
# messages = [{"role": "system", "content": system}] | |
# def classify(platform, UserInput, Images, Textbox2, Textbox3): | |
# if Textbox3 == code: | |
# imageData = None | |
# image_data_url = None # Initialize image_data_url | |
# if Images is not None: | |
# output = [] | |
# headers = { | |
# "Authorization": f"Bearer {auth2}" | |
# } | |
# if platform == "wh": | |
# get_image = requests.get(Images, headers=headers) | |
# if get_image.status_code == 200: | |
# # Convert the image data to base64 | |
# image_base64 = base64.b64encode(get_image.content).decode("utf-8") | |
# # Create a data URL | |
# image_data_url = f"data:image/png;base64,{image_base64}" | |
# elif platform == "web": | |
# print("WEB") | |
# # Handle web case if needed | |
# else: | |
# pass | |
# if image_data_url is not None: | |
# # Load the image from image_data_url | |
# image_data = base64.b64decode(image_base64) | |
# nparr = np.frombuffer(image_data, np.uint8) | |
# image = cv.imdecode(nparr, cv.IMREAD_COLOR) | |
# image = cv.resize(image, (224, 224)) | |
# image_array = np.asarray(image) | |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
# data[0] = normalized_image_array | |
# prediction = model.predict(data) | |
# max_label_index = None | |
# max_prediction_value = -1 | |
# print('Prediction') | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# messages.append({"role": "user", "content": UserInput}) | |
# for i, label in enumerate(labels): | |
# prediction_value = float(prediction[0][i]) | |
# rounded_value = round(prediction_value, 2) | |
# print(f'{label}: {rounded_value}') | |
# if prediction_value > max_prediction_value: | |
# max_label_index = i | |
# max_prediction_value = prediction_value | |
# if max_label_index is not None: | |
# max_label = labels[max_label_index].split(' ', 1)[1] | |
# max_rounded_prediction = round(max_prediction_value, 2) | |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}') | |
# if max_rounded_prediction > 0.5: | |
# print("\nWays to dispose of this waste: " + max_label) | |
# messages.append({"role": "user", "content": content + " " + max_label}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply}) | |
# elif max_rounded_prediction < 0.5: | |
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"}) | |
# output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url}) | |
# return output | |
# else: | |
# output = [] | |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "") | |
# Textbox2 = Textbox2.split(",") | |
# Textbox2_edited = [x.strip() for x in Textbox2] | |
# Textbox2_edited = list(Textbox2_edited) | |
# Textbox2_edited.append(UserInput) | |
# for i in Textbox2_edited: | |
# messages.append({"role": "user", "content": i}) | |
# print("messages after appending:", messages) | |
# messages.append({"role": "user", "content": UserInput}) | |
# headers = { | |
# "Content-Type": "application/json", | |
# "Authorization": f"Bearer {auth}" | |
# } | |
# response = requests.post(host, headers=headers, json={ | |
# "messages": messages, | |
# "model": model_llm | |
# }).json() | |
# reply = response["choices"][0]["message"]["content"] | |
# messages.append({"role": "assistant", "content": reply}) | |
# output.append({"Mode": "Chat", "content": reply}) | |
# return output | |
# else: | |
# return "Unauthorized" | |
# user_inputs = [ | |
# gr.Textbox(label="Platform", type="text"), | |
# gr.Textbox(label="User Input", type="text"), | |
# gr.Textbox(label="Images", type="text"), | |
# gr.Textbox(label="Textbox2", type="text"), | |
# gr.Textbox(label="Textbox3", type="password") | |
# ] | |
# iface = gr.Interface( | |
# fn=classify, | |
# inputs=user_inputs, | |
# outputs=gr.outputs.JSON(), | |
# title="Classifier", | |
# ) | |
# iface.launch() | |