Spaces:
Running
Running
File size: 31,168 Bytes
e46c16c 1250d8b fc97386 e46c16c fc97386 e46c16c fc97386 e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c 1250d8b e46c16c fc97386 e46c16c fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 a61193c fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 fd219e6 fc97386 a61193c fc97386 fd219e6 fc97386 206df47 fc97386 e300076 8074918 fc97386 8842541 fc97386 49c6ab9 efb55bd fc97386 0c822b5 fc97386 206df47 e300076 206df47 fc97386 0c822b5 370fa6b bfaebe5 99711c6 fc97386 ba40759 fc97386 7e3472a bfaebe5 7e3472a 206df47 1475f6c d99d736 1475f6c fc97386 8842541 fc97386 206df47 e300076 206df47 fc97386 e478c1b d99d736 fc97386 403b9b0 89b3647 206df47 89b3647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os
# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# data = None
# model = None
# image = None
# prediction = None
# labels = None
# print('START')
# np.set_printoptions(suppress=True)
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# with open("labels.txt", "r") as file:
# labels = file.read().splitlines()
# messages = [
# {"role": "system", "content": system}
# ]
# def classify(UserInput, Image, Textbox2, Textbox3):
# if Textbox3 == code:
# print("Image: ", Image)
# if Image is not None:
# output = []
# image_data = np.array(Image)
# image_data = cv.resize(image_data, (224, 224))
# image_array = np.asarray(image_data)
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# data[0] = normalized_image_array
# import tensorflow as tf
# model = tf.keras.models.load_model('keras_model.h5')
# prediction = model.predict(data)
# max_label_index = None
# max_prediction_value = -1
# print('Prediction')
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# messages.append({"role": "user", "content": UserInput})
# for i, label in enumerate(labels):
# prediction_value = float(prediction[0][i])
# rounded_value = round(prediction_value, 2)
# print(f'{label}: {rounded_value}')
# if prediction_value > max_prediction_value:
# max_label_index = i
# max_prediction_value = prediction_value
# if max_label_index is not None:
# max_label = labels[max_label_index].split(' ', 1)[1]
# max_rounded_prediction = round(max_prediction_value, 2)
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
# time.sleep(1)
# if max_rounded_prediction > 0.5:
# print("\nWays to dispose of this waste: " + max_label)
# messages.append({"role": "user", "content": content + " " + max_label})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
# elif max_rounded_prediction < 0.5:
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
# return output
# else:
# output = []
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# for i in Textbox2_edited:
# messages.append(
# {"role": "user", "content": i}
# )
# print("messages after appending:", messages)
# time.sleep(1)
# messages.append({"role": "user", "content": UserInput})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Chat", "content": reply})
# return output
# else:
# return "Unauthorized"
# user_inputs = [
# gr.Textbox(label="User Input", type="text"),
# gr.Image(),
# gr.Textbox(label="Textbox2", type="text"),
# gr.Textbox(label="Textbox3", type="password")
# ]
# iface = gr.Interface(
# fn=classify,
# inputs=user_inputs,
# outputs=gr.outputs.JSON(),
# title="Classifier",
# )
# iface.launch()
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os
# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None
# model = None
# image = None
# prediction = None
# labels = None
# print('START')
# np.set_printoptions(suppress=True)
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# with open("labels.txt", "r") as file:
# labels = file.read().splitlines()
# messages = [
# {"role": "system", "content": system}
# ]
# def classify(platform,UserInput, Image, Textbox2, Textbox3):
# if Textbox3 == code:
# if Image is not None:
# output = []
# headers = {
# "Authorization": f"Bearer {auth2}"
# }
# if platform == "wh":
# get_image = requests.get(Image, headers=headers)
# print(get_image.content)
# elif platform == "web":
# print("WEB")
# else:
# pass
# image_data = np.array(get_image)
# image_data = cv.resize(image_data, (224, 224))
# image_array = np.asarray(image_data)
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# data[0] = normalized_image_array
# import tensorflow as tf
# model = tf.keras.models.load_model('keras_model.h5')
# prediction = model.predict(data)
# max_label_index = None
# max_prediction_value = -1
# print('Prediction')
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# messages.append({"role": "user", "content": UserInput})
# for i, label in enumerate(labels):
# prediction_value = float(prediction[0][i])
# rounded_value = round(prediction_value, 2)
# print(f'{label}: {rounded_value}')
# if prediction_value > max_prediction_value:
# max_label_index = i
# max_prediction_value = prediction_value
# if max_label_index is not None:
# max_label = labels[max_label_index].split(' ', 1)[1]
# max_rounded_prediction = round(max_prediction_value, 2)
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
# time.sleep(1)
# if max_rounded_prediction > 0.5:
# print("\nWays to dispose of this waste: " + max_label)
# messages.append({"role": "user", "content": content + " " + max_label})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
# elif max_rounded_prediction < 0.5:
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
# return output
# else:
# output = []
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# for i in Textbox2_edited:
# messages.append(
# {"role": "user", "content": i}
# )
# print("messages after appending:", messages)
# time.sleep(1)
# messages.append({"role": "user", "content": UserInput})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Chat", "content": reply})
# return output
# else:
# return "Unauthorized"
# user_inputs = [
# gr.Textbox(label="Platform", type="text"),
# gr.Textbox(label="User Input", type="text"),
# gr.Textbox(label="Image", type="text"),
# gr.Textbox(label="Textbox2", type="text"),
# gr.Textbox(label="Textbox3", type="password")
# ]
# iface = gr.Interface(
# fn=classify,
# inputs=user_inputs,
# outputs=gr.outputs.JSON(),
# title="Classifier",
# )
# iface.launch()
############################### MOST WORKING
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import io
# from PIL import Image
# import os
# import tensorflow as tf
# import random
# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None
# np.set_printoptions(suppress=True)
# model = tf.keras.models.load_model('keras_model.h5')
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# with open("labels.txt", "r") as file:
# labels = file.read().splitlines()
# messages = [
# {"role": "system", "content": system}
# ]
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
# if Textbox3 == code:
# imageData = None
# if Images != "None":
# output = []
# headers = {
# "Authorization": f"Bearer {auth2}"
# }
# if platform == "wh":
# get_image = requests.get(Images, headers=headers)
# if get_image.status_code == 200:
# image_data = get_image.content
# elif platform == "web":
# print("WEB")
# else:
# pass
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
# image = cv.resize(image, (224, 224))
# image_array = np.asarray(image)
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# data[0] = normalized_image_array
# prediction = model.predict(data)
# max_label_index = None
# max_prediction_value = -1
# print('Prediction')
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# print(UserInput)
# print("appending")
# messages.append({"role": "user", "content": UserInput})
# for i, label in enumerate(labels):
# prediction_value = float(prediction[0][i])
# rounded_value = round(prediction_value, 2)
# print(f'{label}: {rounded_value}')
# if prediction_value > max_prediction_value:
# max_label_index = i
# max_prediction_value = prediction_value
# if max_label_index is not None:
# max_label = labels[max_label_index].split(' ', 1)[1]
# max_rounded_prediction = round(max_prediction_value, 2)
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
# if max_rounded_prediction > 0.5:
# print("\nWays to dispose of this waste: " + max_label)
# messages.append({"role": "user", "content": content + " " + max_label})
# # messages.append({"role": "user", "content": max_label})
# print("IMAGE messages after appending:", messages)
# header = {
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# try:
# response = requests.post(host, headers=header, json={
# "messages": messages,
# "model": model_llm
# }).json()
# print("RESPONSE TRY",response)
# reply = response["choices"][0]["message"]["content"]
# # messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
# except:
# print("DOESN'T WORK")
# elif max_rounded_prediction < 0.5:
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
# return output
# elif Images == "None":
# output = []
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# for i in Textbox2_edited:
# messages.append({"role": "user", "content": i})
# print("messages after appending:", messages)
# messages.append({"role": "user", "content": UserInput})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# # messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Chat", "content": reply})
# return output
# else:
# return "Unauthorized"
# user_inputs = [
# gr.Textbox(label="Platform", type="text"),
# gr.Textbox(label="User Input", type="text"),
# gr.Textbox(label="Image", type="text"),
# gr.Textbox(label="Textbox2", type="text"),
# gr.Textbox(label="Textbox3", type="password")
# ]
# iface = gr.Interface(
# fn=classify,
# inputs=user_inputs,
# outputs=gr.outputs.JSON(),
# title="Classifier",
# )
# iface.launch()
############## TEST
import gradio as gr
import numpy as np
import cv2 as cv
import requests
import io
from PIL import Image
import os
import tensorflow as tf
import random
host = os.environ.get("host")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
system = os.environ.get("system")
auth = os.environ.get("auth")
auth2 = os.environ.get("auth2")
data = None
np.set_printoptions(suppress=True)
model = tf.keras.models.load_model('keras_model.h5')
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
with open("labels.txt", "r") as file:
labels = file.read().splitlines()
messages = [
{"role": "system", "content": system}
]
def classify(platform, UserInput, Images, Textbox2, Textbox3):
if UserInput.lower() == "clear history":
messages.clear()
messages.append(
{"role": "system", "content": system}
)
if Textbox3 == code:
imageData = None
if Images != "None":
output = []
headers = {
"Authorization": f"Bearer {auth2}"
}
if platform == "wh":
get_image = requests.get(Images, headers=headers)
if get_image.status_code == 200:
image_data = get_image.content
elif platform == "web":
# print("WEB")
url = requests.get(Images)
image_data = url.content
else:
pass
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
image = cv.resize(image, (224, 224))
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
data[0] = normalized_image_array
prediction = model.predict(data)
max_label_index = None
max_prediction_value = -1
print('Prediction')
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
Textbox2 = Textbox2.split(",")
Textbox2_edited = [x.strip() for x in Textbox2]
Textbox2_edited = list(Textbox2_edited)
Textbox2_edited.append(UserInput)
print(UserInput)
print("appending")
messages.append({"role": "user", "content": UserInput})
# Pop earlier messages if there are more than 10
# if UserInput.lower() == "clear history":
# while len(messages) > 10:
# messages.pop(0)
for i, label in enumerate(labels):
prediction_value = float(prediction[0][i])
rounded_value = round(prediction_value, 2)
print(f'{label}: {rounded_value}')
if prediction_value > max_prediction_value:
max_label_index = i
max_prediction_value = prediction_value
if max_label_index is not None:
max_label = labels[max_label_index].split(' ', 1)[1]
max_rounded_prediction = round(max_prediction_value, 2)
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
if max_rounded_prediction > 0.5:
print("\nWays to dispose of this waste: " + max_label)
messages.append({"role": "user", "content": content + " " + max_label})
print("IMAGE messages after appending:", messages)
header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Content-Type": "application/json",
"Authorization": f"Bearer {auth}"
}
try:
response = requests.post(host, headers=header, json={
"messages": messages,
"model": model_llm
}).json()
print("RESPONSE TRY", response)
reply = response["choices"][0]["message"]["content"]
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
except:
print("DOESN'T WORK")
elif max_rounded_prediction < 0.5:
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
return output
elif Images == "None":
output = []
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
Textbox2 = Textbox2.split(",")
Textbox2_edited = [x.strip() for x in Textbox2]
Textbox2_edited = list(Textbox2_edited)
Textbox2_edited.append(UserInput)
for i in Textbox2_edited:
messages.append({"role": "user", "content": i})
print("messages after appending:", messages)
messages.append({"role": "user", "content": UserInput})
# Pop earlier messages if there are more than 10
# if UserInput.lower() == "clear history":
# while len(messages) > 10:
# messages.pop(0)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {auth}"
}
try:
response = requests.post(host, headers=headers, json={
"messages": messages,
"model": model_llm
}).json()
reply = response["choices"][0]["message"]["content"]
except:
reply = "Maximum messages: 15. Please clear your history and Try Again!"
output.append({"Mode": "Chat", "content": reply})
return output
else:
return "Unauthorized"
user_inputs = [
gr.Textbox(label="Platform", type="text"),
gr.Textbox(label="User Input", type="text"),
gr.Textbox(label="Image", type="text"),
gr.Textbox(label="Textbox2", type="text"),
gr.Textbox(label="Textbox3", type="password")
]
iface = gr.Interface(
fn=classify,
inputs=user_inputs,
outputs=gr.outputs.JSON(),
title="Classifier",
)
iface.launch()
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import random
# import os
# import tensorflow as tf
# import base64
# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None
# np.set_printoptions(suppress=True)
# # Load the model outside of the function
# model = tf.keras.models.load_model('keras_model.h5')
# # Load labels from a file
# with open("labels.txt", "r") as file:
# labels = file.read().splitlines()
# messages = [{"role": "system", "content": system}]
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
# if Textbox3 == code:
# imageData = None
# image_data_url = None # Initialize image_data_url
# if Images is not None:
# output = []
# headers = {
# "Authorization": f"Bearer {auth2}"
# }
# if platform == "wh":
# get_image = requests.get(Images, headers=headers)
# if get_image.status_code == 200:
# # Convert the image data to base64
# image_base64 = base64.b64encode(get_image.content).decode("utf-8")
# # Create a data URL
# image_data_url = f"data:image/png;base64,{image_base64}"
# elif platform == "web":
# print("WEB")
# # Handle web case if needed
# else:
# pass
# if image_data_url is not None:
# # Load the image from image_data_url
# image_data = base64.b64decode(image_base64)
# nparr = np.frombuffer(image_data, np.uint8)
# image = cv.imdecode(nparr, cv.IMREAD_COLOR)
# image = cv.resize(image, (224, 224))
# image_array = np.asarray(image)
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# data[0] = normalized_image_array
# prediction = model.predict(data)
# max_label_index = None
# max_prediction_value = -1
# print('Prediction')
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# messages.append({"role": "user", "content": UserInput})
# for i, label in enumerate(labels):
# prediction_value = float(prediction[0][i])
# rounded_value = round(prediction_value, 2)
# print(f'{label}: {rounded_value}')
# if prediction_value > max_prediction_value:
# max_label_index = i
# max_prediction_value = prediction_value
# if max_label_index is not None:
# max_label = labels[max_label_index].split(' ', 1)[1]
# max_rounded_prediction = round(max_prediction_value, 2)
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
# if max_rounded_prediction > 0.5:
# print("\nWays to dispose of this waste: " + max_label)
# messages.append({"role": "user", "content": content + " " + max_label})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
# elif max_rounded_prediction < 0.5:
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
# output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url})
# return output
# else:
# output = []
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(UserInput)
# for i in Textbox2_edited:
# messages.append({"role": "user", "content": i})
# print("messages after appending:", messages)
# messages.append({"role": "user", "content": UserInput})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages": messages,
# "model": model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode": "Chat", "content": reply})
# return output
# else:
# return "Unauthorized"
# user_inputs = [
# gr.Textbox(label="Platform", type="text"),
# gr.Textbox(label="User Input", type="text"),
# gr.Textbox(label="Images", type="text"),
# gr.Textbox(label="Textbox2", type="text"),
# gr.Textbox(label="Textbox3", type="password")
# ]
# iface = gr.Interface(
# fn=classify,
# inputs=user_inputs,
# outputs=gr.outputs.JSON(),
# title="Classifier",
# )
# iface.launch()
|