Spaces:
Paused
Paused
File size: 11,886 Bytes
424c696 dd86138 6bbfa6b cecbcaf 542042e 424c696 542042e 424c696 701cb78 50a45b5 424c696 cecbcaf 542042e 33c2b59 542042e cecbcaf 542042e 6195c34 542042e cecbcaf 542042e cecbcaf 542042e 424c696 542042e 6bbfa6b cecbcaf 71b65a7 4428a51 424c696 ef0d9eb 6bbfa6b 08c7cdd 6bbfa6b 4428a51 6bbfa6b cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e 424c696 542042e cecbcaf 4428a51 542042e 424c696 542042e cecbcaf 542042e cecbcaf 542042e 33c2b59 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 33c2b59 cecbcaf 33c2b59 cecbcaf 33c2b59 cecbcaf 33c2b59 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e cecbcaf 542042e 114e54c 542042e 114e54c 542042e 114e54c 542042e cecbcaf 542042e cecbcaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
import time
# --------------------------- Configuration & Session State ---------------------------
# Define maximum dimensions for the fortune image (in pixels)
MAX_SIZE = (400, 400)
# Initialize button click count in session state
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
# Set page configuration and title
st.set_page_config(page_title="Fortune Stick Enquiry", layout="wide")
st.title("Fortune Stick Enquiry")
# Initialize session state variables for managing application state
if "submitted_text" not in st.session_state:
st.session_state.submitted_text = False
if "fortune_number" not in st.session_state:
st.session_state.fortune_number = None
if "fortune_row" not in st.session_state:
st.session_state.fortune_row = None
if "error_message" not in st.session_state:
st.session_state.error_message = ""
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
if "stick_clicked" not in st.session_state:
st.session_state.stick_clicked = False
# Load fortune details from CSV file into session state
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
# --------------------------- Model Functions ---------------------------
# Function to load a fine-tuned classifier model and predict a label based on the question
def load_finetuned_classifier_model(question):
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
# Mapping to convert default "LABEL_x" outputs to meaningful labels
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
return predicted_label
# Function to generate a detailed answer by combining the user's question and the fortune detail
def generate_answer(question, fortune):
# Start measuring runtime
start_time = time.perf_counter()
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
early_stopping=True,
repetition_penalty=2.0,
no_repeat_ngram_size=3
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Stop measuring runtime
run_time = time.perf_counter() - start_time
print(f"Runtime: {run_time:.4f} seconds")
return answer
# Function that combines analysis with regex to extract the related fortune detail and then generate an answer
def analysis(row_detail, classifiy, question):
# Use the classifier's output to match the corresponding detail in the fortune data
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
# Generate a custom answer based on the matched fortune detail and the user's question
return generate_answer(question, result)
else:
return "Heaven's secret cannot be revealed."
# Function to check if the input sentence is in English using a language detection model
def check_sentence_is_english_model(question):
pipe_english = pipeline("text-classification", model="eleldar/language-detection")
return pipe_english(question)[0]['label'] == 'en'
# Function to check if the input sentence is a question using a question vs. statement classifier
def check_sentence_is_question_model(question):
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
# --------------------------- Callback Functions ---------------------------
# Callback for when the submit button is clicked
def submit_text_callback():
question = st.session_state.get("user_sentence", "")
# Clear any previous error message
st.session_state.error_message = ""
# Validate that the input is in English and is a question
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
# Require a second confirmation click to proceed
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
# If validations pass, set submission flag and reset click counter
st.session_state.submitted_text = True
st.session_state.button_count_temp = 0
# Randomly generate a fortune number between 1 and 100
st.session_state.fortune_number = random.randint(1, 100)
# Retrieve corresponding fortune details from the CSV based on the generated number
df = st.session_state.fortune_data
row_detail = ''
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
row_detail = row.get("Detail", "No detail available.")
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row_detail,
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
# Function to load and resize a local image file
def load_and_resize_image(path, max_size=MAX_SIZE):
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
# Function to download an image from a URL and resize it
def download_and_resize_image(url, max_size=MAX_SIZE):
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
# Callback for when the 'Cfu Explain' button is clicked
def stick_enquiry_callback():
# Retrieve the user's question and ensure fortune data is available
question = st.session_state.get("user_sentence", "")
if not st.session_state.fortune_row:
st.error("Fortune data is not available. Please submit your question first.")
return
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
# Classify the question to determine which fortune detail to use
classifiy = load_finetuned_classifier_model(question)
# Generate an explanation based on the classification and fortune detail
cfu_explain = analysis(row_detail, classifiy, question)
# Save the generated explanation for display
st.session_state.cfu_explain_text = cfu_explain
st.session_state.stick_clicked = True
# --------------------------- Layout & Display ---------------------------
# Define the main layout with two columns: left for user input and right for fortune display
left_col, _, right_col = st.columns([3, 1, 5])
# ---- Left Column: User Input and Interaction ----
with left_col:
left_top = st.container()
left_bottom = st.container()
# Top container: Question input and submission button
with left_top:
st.text_area("Enter your question in English", key="user_sentence", height=150)
st.button("submit", key="submit_button", on_click=submit_text_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
# Bottom container: Button to trigger explanation and display the generated answer
if st.session_state.submitted_text:
with left_bottom:
# Add spacing for better visual separation
for _ in range(5):
st.write("")
col1, col2, col3 = st.columns(3)
with col2:
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
if st.session_state.stick_clicked:
# Display the generated explanation text
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
# ---- Right Column: Fortune Display (Image and Details) ----
with right_col:
with st.container():
col_left, col_center, col_right = st.columns([1, 2, 1])
with col_center:
# Display fortune image based on fortune data availability
if st.session_state.submitted_text and st.session_state.fortune_row:
header_link = st.session_state.fortune_row.get("HeaderLink")
if header_link:
img_from_url = download_and_resize_image(header_link)
if img_from_url:
st.image(img_from_url, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/fortune.png")
if img:
st.image(img, caption="Your Fortune", use_container_width=False)
with st.container():
# Display fortune details: Number, Luck, Description, and Detail
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
summary = f"""
<div style="font-size: 28px; font-weight: bold;">
Fortune stick number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
st.text_area("Description", value=description_text, height=150, disabled=True)
st.text_area("Detail", value=detail_text, height=150, disabled=True)
|