Group22_Project / app.py
tonyhui2234's picture
Update app.py
701cb78 verified
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
import time
# --------------------------- Configuration & Session State ---------------------------
# Define maximum dimensions for the fortune image (in pixels)
MAX_SIZE = (400, 400)
# Initialize button click count in session state
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
# Set page configuration and title
st.set_page_config(page_title="Fortune Stick Enquiry", layout="wide")
st.title("Fortune Stick Enquiry")
# Initialize session state variables for managing application state
if "submitted_text" not in st.session_state:
st.session_state.submitted_text = False
if "fortune_number" not in st.session_state:
st.session_state.fortune_number = None
if "fortune_row" not in st.session_state:
st.session_state.fortune_row = None
if "error_message" not in st.session_state:
st.session_state.error_message = ""
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
if "stick_clicked" not in st.session_state:
st.session_state.stick_clicked = False
# Load fortune details from CSV file into session state
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
# --------------------------- Model Functions ---------------------------
# Function to load a fine-tuned classifier model and predict a label based on the question
def load_finetuned_classifier_model(question):
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
# Mapping to convert default "LABEL_x" outputs to meaningful labels
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
return predicted_label
# Function to generate a detailed answer by combining the user's question and the fortune detail
def generate_answer(question, fortune):
# Start measuring runtime
start_time = time.perf_counter()
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
early_stopping=True,
repetition_penalty=2.0,
no_repeat_ngram_size=3
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Stop measuring runtime
run_time = time.perf_counter() - start_time
print(f"Runtime: {run_time:.4f} seconds")
return answer
# Function that combines analysis with regex to extract the related fortune detail and then generate an answer
def analysis(row_detail, classifiy, question):
# Use the classifier's output to match the corresponding detail in the fortune data
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
# Generate a custom answer based on the matched fortune detail and the user's question
return generate_answer(question, result)
else:
return "Heaven's secret cannot be revealed."
# Function to check if the input sentence is in English using a language detection model
def check_sentence_is_english_model(question):
pipe_english = pipeline("text-classification", model="eleldar/language-detection")
return pipe_english(question)[0]['label'] == 'en'
# Function to check if the input sentence is a question using a question vs. statement classifier
def check_sentence_is_question_model(question):
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
# --------------------------- Callback Functions ---------------------------
# Callback for when the submit button is clicked
def submit_text_callback():
question = st.session_state.get("user_sentence", "")
# Clear any previous error message
st.session_state.error_message = ""
# Validate that the input is in English and is a question
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
# Require a second confirmation click to proceed
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
# If validations pass, set submission flag and reset click counter
st.session_state.submitted_text = True
st.session_state.button_count_temp = 0
# Randomly generate a fortune number between 1 and 100
st.session_state.fortune_number = random.randint(1, 100)
# Retrieve corresponding fortune details from the CSV based on the generated number
df = st.session_state.fortune_data
row_detail = ''
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
row_detail = row.get("Detail", "No detail available.")
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row_detail,
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
# Function to load and resize a local image file
def load_and_resize_image(path, max_size=MAX_SIZE):
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
# Function to download an image from a URL and resize it
def download_and_resize_image(url, max_size=MAX_SIZE):
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
# Callback for when the 'Cfu Explain' button is clicked
def stick_enquiry_callback():
# Retrieve the user's question and ensure fortune data is available
question = st.session_state.get("user_sentence", "")
if not st.session_state.fortune_row:
st.error("Fortune data is not available. Please submit your question first.")
return
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
# Classify the question to determine which fortune detail to use
classifiy = load_finetuned_classifier_model(question)
# Generate an explanation based on the classification and fortune detail
cfu_explain = analysis(row_detail, classifiy, question)
# Save the generated explanation for display
st.session_state.cfu_explain_text = cfu_explain
st.session_state.stick_clicked = True
# --------------------------- Layout & Display ---------------------------
# Define the main layout with two columns: left for user input and right for fortune display
left_col, _, right_col = st.columns([3, 1, 5])
# ---- Left Column: User Input and Interaction ----
with left_col:
left_top = st.container()
left_bottom = st.container()
# Top container: Question input and submission button
with left_top:
st.text_area("Enter your question in English", key="user_sentence", height=150)
st.button("submit", key="submit_button", on_click=submit_text_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
# Bottom container: Button to trigger explanation and display the generated answer
if st.session_state.submitted_text:
with left_bottom:
# Add spacing for better visual separation
for _ in range(5):
st.write("")
col1, col2, col3 = st.columns(3)
with col2:
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
if st.session_state.stick_clicked:
# Display the generated explanation text
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
# ---- Right Column: Fortune Display (Image and Details) ----
with right_col:
with st.container():
col_left, col_center, col_right = st.columns([1, 2, 1])
with col_center:
# Display fortune image based on fortune data availability
if st.session_state.submitted_text and st.session_state.fortune_row:
header_link = st.session_state.fortune_row.get("HeaderLink")
if header_link:
img_from_url = download_and_resize_image(header_link)
if img_from_url:
st.image(img_from_url, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/fortune.png")
if img:
st.image(img, caption="Your Fortune", use_container_width=False)
with st.container():
# Display fortune details: Number, Luck, Description, and Detail
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
summary = f"""
<div style="font-size: 28px; font-weight: bold;">
Fortune stick number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
st.text_area("Description", value=description_text, height=150, disabled=True)
st.text_area("Detail", value=detail_text, height=150, disabled=True)