Spaces:
Paused
Paused
import streamlit as st | |
import random | |
import pandas as pd | |
import requests | |
from io import BytesIO | |
from PIL import Image | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
import re | |
import time | |
# --------------------------- Configuration & Session State --------------------------- | |
# Define maximum dimensions for the fortune image (in pixels) | |
MAX_SIZE = (400, 400) | |
# Initialize button click count in session state | |
if "button_count_temp" not in st.session_state: | |
st.session_state.button_count_temp = 0 | |
# Set page configuration and title | |
st.set_page_config(page_title="Fortune Stick Enquiry", layout="wide") | |
st.title("Fortune Stick Enquiry") | |
# Initialize session state variables for managing application state | |
if "submitted_text" not in st.session_state: | |
st.session_state.submitted_text = False | |
if "fortune_number" not in st.session_state: | |
st.session_state.fortune_number = None | |
if "fortune_row" not in st.session_state: | |
st.session_state.fortune_row = None | |
if "error_message" not in st.session_state: | |
st.session_state.error_message = "" | |
if "cfu_explain_text" not in st.session_state: | |
st.session_state.cfu_explain_text = "" | |
if "stick_clicked" not in st.session_state: | |
st.session_state.stick_clicked = False | |
# Load fortune details from CSV file into session state | |
if "fortune_data" not in st.session_state: | |
try: | |
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv") | |
except Exception as e: | |
st.error(f"Error loading CSV: {e}") | |
st.session_state.fortune_data = None | |
# --------------------------- Model Functions --------------------------- | |
# Function to load a fine-tuned classifier model and predict a label based on the question | |
def load_finetuned_classifier_model(question): | |
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"] | |
# Mapping to convert default "LABEL_x" outputs to meaningful labels | |
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)} | |
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10") | |
prediction = pipe(question)[0]['label'] | |
predicted_label = mapping.get(prediction, prediction) | |
return predicted_label | |
# Function to generate a detailed answer by combining the user's question and the fortune detail | |
def generate_answer(question, fortune): | |
# Start measuring runtime | |
start_time = time.perf_counter() | |
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen") | |
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto") | |
input_text = "Question: " + question + " Fortune: " + fortune | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
outputs = model.generate( | |
**inputs, | |
max_length=256, | |
num_beams=4, | |
early_stopping=True, | |
repetition_penalty=2.0, | |
no_repeat_ngram_size=3 | |
) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Stop measuring runtime | |
run_time = time.perf_counter() - start_time | |
print(f"Runtime: {run_time:.4f} seconds") | |
return answer | |
# Function that combines analysis with regex to extract the related fortune detail and then generate an answer | |
def analysis(row_detail, classifiy, question): | |
# Use the classifier's output to match the corresponding detail in the fortune data | |
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE) | |
match = pattern.search(row_detail) | |
if match: | |
result = match.group(1) | |
# Generate a custom answer based on the matched fortune detail and the user's question | |
return generate_answer(question, result) | |
else: | |
return "Heaven's secret cannot be revealed." | |
# Function to check if the input sentence is in English using a language detection model | |
def check_sentence_is_english_model(question): | |
pipe_english = pipeline("text-classification", model="eleldar/language-detection") | |
return pipe_english(question)[0]['label'] == 'en' | |
# Function to check if the input sentence is a question using a question vs. statement classifier | |
def check_sentence_is_question_model(question): | |
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier") | |
return pipe_question(question)[0]['label'] == 'LABEL_1' | |
# --------------------------- Callback Functions --------------------------- | |
# Callback for when the submit button is clicked | |
def submit_text_callback(): | |
question = st.session_state.get("user_sentence", "") | |
# Clear any previous error message | |
st.session_state.error_message = "" | |
# Validate that the input is in English and is a question | |
if not check_sentence_is_english_model(question): | |
st.session_state.error_message = "Please enter in English!" | |
st.session_state.button_count_temp = 0 | |
return | |
if not check_sentence_is_question_model(question): | |
st.session_state.error_message = "This is not a question. Please enter again!" | |
st.session_state.button_count_temp = 0 | |
return | |
# Require a second confirmation click to proceed | |
if st.session_state.button_count_temp == 0: | |
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!" | |
st.session_state.button_count_temp = 1 | |
return | |
# If validations pass, set submission flag and reset click counter | |
st.session_state.submitted_text = True | |
st.session_state.button_count_temp = 0 | |
# Randomly generate a fortune number between 1 and 100 | |
st.session_state.fortune_number = random.randint(1, 100) | |
# Retrieve corresponding fortune details from the CSV based on the generated number | |
df = st.session_state.fortune_data | |
row_detail = '' | |
if df is not None: | |
matching_row = df[df['CNumber'] == st.session_state.fortune_number] | |
if not matching_row.empty: | |
row = matching_row.iloc[0] | |
row_detail = row.get("Detail", "No detail available.") | |
st.session_state.fortune_row = { | |
"Header": row.get("Header", "N/A"), | |
"Luck": row.get("Luck", "N/A"), | |
"Description": row.get("Description", "No description available."), | |
"Detail": row_detail, | |
"HeaderLink": row.get("link", None) | |
} | |
else: | |
st.session_state.fortune_row = { | |
"Header": "N/A", | |
"Luck": "N/A", | |
"Description": "No description available.", | |
"Detail": "No detail available.", | |
"HeaderLink": None | |
} | |
# Function to load and resize a local image file | |
def load_and_resize_image(path, max_size=MAX_SIZE): | |
try: | |
img = Image.open(path) | |
img.thumbnail(max_size, Image.Resampling.LANCZOS) | |
return img | |
except Exception as e: | |
st.error(f"Error loading image: {e}") | |
return None | |
# Function to download an image from a URL and resize it | |
def download_and_resize_image(url, max_size=MAX_SIZE): | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
image_bytes = BytesIO(response.content) | |
img = Image.open(image_bytes) | |
img.thumbnail(max_size, Image.Resampling.LANCZOS) | |
return img | |
except Exception as e: | |
st.error(f"Error loading image from URL: {e}") | |
return None | |
# Callback for when the 'Cfu Explain' button is clicked | |
def stick_enquiry_callback(): | |
# Retrieve the user's question and ensure fortune data is available | |
question = st.session_state.get("user_sentence", "") | |
if not st.session_state.fortune_row: | |
st.error("Fortune data is not available. Please submit your question first.") | |
return | |
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.") | |
# Classify the question to determine which fortune detail to use | |
classifiy = load_finetuned_classifier_model(question) | |
# Generate an explanation based on the classification and fortune detail | |
cfu_explain = analysis(row_detail, classifiy, question) | |
# Save the generated explanation for display | |
st.session_state.cfu_explain_text = cfu_explain | |
st.session_state.stick_clicked = True | |
# --------------------------- Layout & Display --------------------------- | |
# Define the main layout with two columns: left for user input and right for fortune display | |
left_col, _, right_col = st.columns([3, 1, 5]) | |
# ---- Left Column: User Input and Interaction ---- | |
with left_col: | |
left_top = st.container() | |
left_bottom = st.container() | |
# Top container: Question input and submission button | |
with left_top: | |
st.text_area("Enter your question in English", key="user_sentence", height=150) | |
st.button("submit", key="submit_button", on_click=submit_text_callback) | |
if st.session_state.error_message: | |
st.error(st.session_state.error_message) | |
# Bottom container: Button to trigger explanation and display the generated answer | |
if st.session_state.submitted_text: | |
with left_bottom: | |
# Add spacing for better visual separation | |
for _ in range(5): | |
st.write("") | |
col1, col2, col3 = st.columns(3) | |
with col2: | |
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback) | |
if st.session_state.stick_clicked: | |
# Display the generated explanation text | |
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True) | |
# ---- Right Column: Fortune Display (Image and Details) ---- | |
with right_col: | |
with st.container(): | |
col_left, col_center, col_right = st.columns([1, 2, 1]) | |
with col_center: | |
# Display fortune image based on fortune data availability | |
if st.session_state.submitted_text and st.session_state.fortune_row: | |
header_link = st.session_state.fortune_row.get("HeaderLink") | |
if header_link: | |
img_from_url = download_and_resize_image(header_link) | |
if img_from_url: | |
st.image(img_from_url, use_container_width=False) | |
else: | |
img = load_and_resize_image("/home/user/app/resources/error.png") | |
if img: | |
st.image(img, use_container_width=False) | |
else: | |
img = load_and_resize_image("/home/user/app/resources/error.png") | |
if img: | |
st.image(img, use_container_width=False) | |
else: | |
img = load_and_resize_image("/home/user/app/resources/fortune.png") | |
if img: | |
st.image(img, caption="Your Fortune", use_container_width=False) | |
with st.container(): | |
# Display fortune details: Number, Luck, Description, and Detail | |
if st.session_state.fortune_row: | |
luck_text = st.session_state.fortune_row.get("Luck", "N/A") | |
description_text = st.session_state.fortune_row.get("Description", "No description available.") | |
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.") | |
summary = f""" | |
<div style="font-size: 28px; font-weight: bold;"> | |
Fortune stick number: {st.session_state.fortune_number}<br> | |
Luck: {luck_text} | |
</div> | |
""" | |
st.markdown(summary, unsafe_allow_html=True) | |
st.text_area("Description", value=description_text, height=150, disabled=True) | |
st.text_area("Detail", value=detail_text, height=150, disabled=True) | |