tonyhui2234's picture
Create app.py
6669689 verified
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
import time
# --------------------------- Configuration & CSS ---------------------------
MAX_SIZE = (450, 450)
st.set_page_config(page_title="🔮 Divine Fortune Teller", page_icon=":crystal_ball:")
# Updated CSS: added rules to force text color to black for inputs, text areas, and markdown
st.markdown(
"""
<style>
.reportview-container {
background: linear-gradient(135deg, #f6d365, #fda085);
}
.card {
background: rgba(255, 255, 255, 0.95);
padding: 30px;
border-radius: 12px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
max-width: 800px;
margin: auto;
text-align: center;
}
/* Force all text to be black */
body, input, textarea, .stMarkdown, label {
color: black !important;
}
</style>
""",
unsafe_allow_html=True,
)
# --------------------------- Session State Initialization ---------------------------
if 'submitted' not in st.session_state:
st.session_state.submitted = False
if 'error_message' not in st.session_state:
st.session_state.error_message = ""
if 'question' not in st.session_state:
st.session_state.question = ""
if 'fortune_number' not in st.session_state:
st.session_state.fortune_number = None
if 'fortune_row' not in st.session_state:
st.session_state.fortune_row = None
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
# --------------------------- Load Fortune CSV ---------------------------
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
# --------------------------- Helper Functions ---------------------------
def load_and_resize_image(path, max_size=MAX_SIZE):
"""
Loads an image from a local file path and resizes it to fit within a specified maximum size.
"""
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
def download_and_resize_image(url, max_size=MAX_SIZE):
"""
Downloads an image from a given URL, then resizes it to a predefined maximum size.
"""
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
def display_text_field(label, text, height):
"""
Creates and displays a custom-styled text field with a title and scrollable content.
"""
html = f"""
<h6 style="display: block; margin-top: 10px;">{label}</h6>
<div style="border: 1px solid #ccc; border-radius: 4px; background-color: #f0f0f0;
padding: 10px; height: {height}px; overflow-y: auto; color: black; font-size: 16px;">
<div>{text}</div>
</div>
"""
st.markdown(html, unsafe_allow_html=True)
# --------------------------- Model Functions ---------------------------
def load_finetuned_classifier_model(question):
"""
Uses a fine-tuned text classification model to categorize the user's question into one of several predefined fortune themes.
"""
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
return predicted_label
def generate_answer(question, fortune):
"""
Generates a detailed explanation by feeding the question and the selected fortune text into a fine-tuned sequence-to-sequence language model.
"""
start_time = time.perf_counter()
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
early_stopping=True,
repetition_penalty=2.0,
no_repeat_ngram_size=3
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
run_time = time.perf_counter() - start_time
print(f"Runtime: {run_time:.4f} seconds")
return answer
def analysis(row_detail, classifiy, question):
"""
Extracts a specific portion of the fortune details based on the classification result and then generates an answer using the text generation model.
"""
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
return generate_answer(question, result)
else:
return "Heaven's secret cannot be revealed."
def check_sentence_is_english_model(question):
"""
Checks if the provided text is in English using a language detection model.
"""
pipe_english = pipeline("text-classification", model="eleldar/language-detection")
return pipe_english(question)[0]['label'] == 'en'
def check_sentence_is_question_model(question):
"""
Determines whether the input text is formulated as a question using a question vs. statement classifier.
"""
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
# --------------------------- Callback Functions ---------------------------
def random_draw():
"""
Randomly selects a fortune entry from the loaded CSV based on a randomly generated number and updates the session state with the fortune’s details.
"""
st.session_state.fortune_number = random.randint(1, 100)
df = st.session_state.fortune_data
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row.get("Detail", "No detail available."),
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
else:
st.session_state.error_message = "Fortune data is not available."
st.session_state.submitted = True
st.session_state.show_explain = False
def submit_callback():
"""
Validates the initial user input (ensuring it’s non-empty, in English, and a question), prompts the user to reflect, and then triggers a random fortune draw if the criteria are met.
"""
question = st.session_state.get("question_input", "").strip()
if not question:
st.session_state.error_message = "Please enter a valid question."
st.session_state.submitted = False
return
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
st.session_state.error_message = ""
st.session_state.question = question
st.session_state.button_count_temp = 0
random_draw()
def resubmit_callback():
"""
Allows the user to submit a revised question with similar validations, then updates the fortune selection accordingly.
"""
new_question = st.session_state.get("resubmit_input", "").strip()
if new_question == "":
st.session_state.error_message = "Please enter a valid question."
return
if not check_sentence_is_english_model(new_question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(new_question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
st.session_state.error_message = ""
if new_question != st.session_state.question:
st.session_state.question = new_question
st.session_state.button_count_temp = 0
random_draw()
def explain_callback():
"""
Uses the selected fortune details and the classifier to generate and display a customized explanation for the user's question using the text generation model.
"""
question = st.session_state.question
if not st.session_state.fortune_row:
st.error("Fortune data is not available. Please submit your question first.")
return
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
classify = load_finetuned_classifier_model(question)
print(f"classify Checking: {classify}\nQuestion: {question}")
cfu_explain = analysis(row_detail, classify, question)
st.session_state.cfu_explain_text = cfu_explain
st.session_state.show_explain = True
# --------------------------- Layout & Display ---------------------------
st.title("🔮 Divine Fortune Teller")
if not st.session_state.submitted:
st.image("/home/user/app/resources/front.png", use_container_width=True)
st.text_input("Ask your fortune question...", key="question_input")
st.button("Submit", on_click=submit_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
else:
st.text_input("Your Question", value=st.session_state.question, key="resubmit_input")
st.button("Resubmit", on_click=resubmit_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
col1, col2 = st.columns([2, 3])
with col1:
if st.session_state.fortune_row and st.session_state.fortune_row.get("HeaderLink"):
img_from_url = download_and_resize_image(st.session_state.fortune_row.get("HeaderLink"))
if img_from_url:
st.markdown("<h6> </h6>", unsafe_allow_html=True)
st.image(img_from_url, use_container_width=False)
else:
default_img = load_and_resize_image("/home/user/app/resources/error.png")
if default_img:
st.image(default_img, caption="Default image", use_container_width=False)
else:
default_img = load_and_resize_image("/home/user/app/resources/error.png")
if default_img:
st.image(default_img, caption="Default image", use_container_width=False)
with col2:
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
summary = f"""
<div style="font-size: 24px; font-weight: bold;">
Fortune Stick Number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
# Replace text_area with our custom text field
display_text_field("Description:", description_text, 180)
display_text_field("Detail:", detail_text, 180)
st.button("CFU Explain", on_click=explain_callback)
if st.session_state.show_explain:
display_text_field("Explanation:", st.session_state.cfu_explain_text, 200)