topdu's picture
openocr demo
29f689c
raw
history blame
10.3 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from openrec.modeling.decoders.nrtr_decoder import PositionalEncoding, TransformerBlock
class BCNLanguage(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_layers=4,
dim_feedforward=2048,
dropout=0.0,
max_length=25,
detach=True,
num_classes=37,
):
super().__init__()
self.d_model = d_model
self.detach = detach
self.max_length = max_length + 1
self.proj = nn.Linear(num_classes, d_model, False)
self.token_encoder = PositionalEncoding(dropout=0.1,
dim=d_model,
max_len=self.max_length)
self.pos_encoder = PositionalEncoding(dropout=0,
dim=d_model,
max_len=self.max_length)
self.decoder = nn.ModuleList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=False,
with_cross_attn=True,
) for i in range(num_layers)
])
self.cls = nn.Linear(d_model, num_classes)
def forward(self, tokens, lengths):
"""
Args:
tokens: (N, T, C) where T is length, N is batch size and C is classes number
lengths: (N,)
"""
if self.detach:
tokens = tokens.detach()
embed = self.proj(tokens) # (N, T, E)
embed = self.token_encoder(embed) # (N, T, E)
mask = _get_mask(lengths, self.max_length) # (N, 1, T, T)
zeros = embed.new_zeros(*embed.shape)
qeury = self.pos_encoder(zeros)
for decoder_layer in self.decoder:
qeury = decoder_layer(qeury, embed, cross_mask=mask)
output = qeury # (N, T, E)
logits = self.cls(output) # (N, T, C)
return output, logits
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
nn.BatchNorm2d(out_c), nn.ReLU(True))
class DecoderUpsample(nn.Module):
def __init__(self, in_c, out_c, k=3, s=1, p=1, mode='nearest') -> None:
super().__init__()
self.align_corners = None if mode == 'nearest' else True
self.mode = mode
# nn.Upsample(size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners),
self.w = nn.Sequential(
nn.Conv2d(in_c, out_c, k, s, p),
nn.BatchNorm2d(out_c),
nn.ReLU(True),
)
def forward(self, x, size):
x = F.interpolate(x,
size=size,
mode=self.mode,
align_corners=self.align_corners)
return self.w(x)
class PositionAttention(nn.Module):
def __init__(self,
max_length,
in_channels=512,
num_channels=64,
mode='nearest',
**kwargs):
super().__init__()
self.max_length = max_length
self.k_encoder = nn.Sequential(
encoder_layer(in_channels, num_channels, s=(1, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
)
self.k_decoder = nn.ModuleList([
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, in_channels, mode=mode),
])
self.pos_encoder = PositionalEncoding(dropout=0,
dim=in_channels,
max_len=max_length)
self.project = nn.Linear(in_channels, in_channels)
def forward(self, x, query=None):
N, E, H, W = x.size()
k, v = x, x # (N, E, H, W)
# calculate key vector
features = []
size_decoder = []
for i in range(0, len(self.k_encoder)):
size_decoder.append(k.shape[2:])
k = self.k_encoder[i](k)
features.append(k)
for i in range(0, len(self.k_decoder) - 1):
k = self.k_decoder[i](k, size=size_decoder[-(i + 1)])
k = k + features[len(self.k_decoder) - 2 - i]
k = self.k_decoder[-1](k, size=size_decoder[0]) # (N, E, H, W)
# calculate query vector
# TODO q=f(q,k)
zeros = x.new_zeros(
(N, self.max_length, E)) if query is None else query # (N, T, E)
q = self.pos_encoder(zeros) # (N, T, E)
q = self.project(q) # (N, T, E)
# calculate attention
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
attn_scores = attn_scores / (E**0.5)
attn_scores = F.softmax(attn_scores, dim=-1)
# (N, E, H, W) -> (N, H, W, E) -> (N, (H*W), E)
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
return attn_vecs, attn_scores.view(N, -1, H, W)
class ABINetDecoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
nhead=8,
num_layers=3,
dim_feedforward=2048,
dropout=0.1,
max_length=25,
iter_size=3,
**kwargs):
super().__init__()
self.max_length = max_length + 1
d_model = in_channels
self.pos_encoder = PositionalEncoding(dropout=0.1, dim=d_model)
self.encoder = nn.ModuleList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=True,
with_cross_attn=False,
) for _ in range(num_layers)
])
self.decoder = PositionAttention(
max_length=self.max_length, # additional stop token
in_channels=d_model,
num_channels=d_model // 8,
mode='nearest',
)
self.out_channels = out_channels
self.cls = nn.Linear(d_model, self.out_channels)
self.iter_size = iter_size
if iter_size > 0:
self.language = BCNLanguage(
d_model=d_model,
nhead=nhead,
num_layers=4,
dim_feedforward=dim_feedforward,
dropout=dropout,
max_length=max_length,
num_classes=self.out_channels,
)
# alignment
self.w_att_align = nn.Linear(2 * d_model, d_model)
self.cls_align = nn.Linear(d_model, self.out_channels)
def forward(self, x, data=None):
# bs, c, h, w
x = x.permute([0, 2, 3, 1]) # bs, h, w, c
_, H, W, C = x.shape
# assert H % 8 == 0 and W % 16 == 0, 'The height and width should be multiples of 8 and 16.'
feature = x.flatten(1, 2) # bs, h*w, c
feature = self.pos_encoder(feature) # bs, h*w, c
for encoder_layer in self.encoder:
feature = encoder_layer(feature)
# bs, h*w, c
feature = feature.reshape([-1, H, W, C]).permute(0, 3, 1,
2) # bs, c, h, w
v_feature, _ = self.decoder(feature) # (bs[N], T, E)
vis_logits = self.cls(v_feature) # (bs[N], T, E)
align_lengths = _get_length(vis_logits)
align_logits = vis_logits
all_l_res, all_a_res = [], []
for _ in range(self.iter_size):
tokens = F.softmax(align_logits, dim=-1)
lengths = torch.clamp(
align_lengths, 2,
self.max_length) # TODO: move to language model
l_feature, l_logits = self.language(tokens, lengths)
# alignment
all_l_res.append(l_logits)
fuse = torch.cat((l_feature, v_feature), -1)
f_att = torch.sigmoid(self.w_att_align(fuse))
output = f_att * v_feature + (1 - f_att) * l_feature
align_logits = self.cls_align(output)
align_lengths = _get_length(align_logits)
all_a_res.append(align_logits)
if self.training:
return {
'align': all_a_res,
'lang': all_l_res,
'vision': vis_logits
}
else:
return F.softmax(align_logits, -1)
def _get_length(logit):
"""Greed decoder to obtain length from logit."""
out = logit.argmax(dim=-1) == 0
non_zero_mask = out.int() != 0
mask_max_values, mask_max_indices = torch.max(non_zero_mask.int(), dim=-1)
mask_max_indices[mask_max_values == 0] = -1
out = mask_max_indices + 1
return out
def _get_mask(length, max_length):
"""Generate a square mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are
filled with float(0.0).
"""
length = length.unsqueeze(-1)
N = length.size(0)
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
zero_mask = torch.zeros([N, max_length],
dtype=torch.float32,
device=length.device)
inf_mask = torch.full([N, max_length],
float('-inf'),
dtype=torch.float32,
device=length.device)
diag_mask = torch.diag(
torch.full([max_length],
float('-inf'),
dtype=torch.float32,
device=length.device),
diagonal=0,
)
mask = torch.where(grid >= length, inf_mask, zero_mask)
mask = mask.unsqueeze(1) + diag_mask
return mask.unsqueeze(1)