Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from openrec.modeling.encoders.svtrnet import ( | |
Block, | |
ConvBNLayer, | |
kaiming_normal_, | |
trunc_normal_, | |
zeros_, | |
ones_, | |
) | |
class Swish(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x * F.sigmoid(x) | |
class EncoderWithSVTR(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
dims=64, # XS | |
depth=2, | |
hidden_dims=120, | |
use_guide=False, | |
num_heads=8, | |
qkv_bias=True, | |
mlp_ratio=2.0, | |
drop_rate=0.1, | |
attn_drop_rate=0.1, | |
drop_path=0.0, | |
kernel_size=[3, 3], | |
qk_scale=None, | |
use_pool=True, | |
): | |
super(EncoderWithSVTR, self).__init__() | |
self.depth = depth | |
self.use_guide = use_guide | |
self.use_pool = use_pool | |
self.conv1 = ConvBNLayer( | |
in_channels, | |
in_channels // 8, | |
kernel_size=kernel_size, | |
padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
act=Swish, | |
bias=False) | |
self.conv2 = ConvBNLayer(in_channels // 8, | |
hidden_dims, | |
kernel_size=1, | |
act=Swish, | |
bias=False) | |
self.svtr_block = nn.ModuleList([ | |
Block( | |
dim=hidden_dims, | |
num_heads=num_heads, | |
mixer='Global', | |
HW=None, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=Swish, | |
attn_drop=attn_drop_rate, | |
drop_path=drop_path, | |
norm_layer='nn.LayerNorm', | |
eps=1e-05, | |
prenorm=False, | |
) for i in range(depth) | |
]) | |
self.norm = nn.LayerNorm(hidden_dims, eps=1e-6) | |
self.conv3 = ConvBNLayer(hidden_dims, | |
in_channels, | |
kernel_size=1, | |
act=Swish, | |
bias=False) | |
# last conv-nxn, the input is concat of input tensor and conv3 output tensor | |
self.conv4 = ConvBNLayer( | |
2 * in_channels, | |
in_channels // 8, | |
kernel_size=kernel_size, | |
padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
act=Swish, | |
bias=False) | |
self.conv1x1 = ConvBNLayer(in_channels // 8, | |
dims, | |
kernel_size=1, | |
act=Swish, | |
bias=False) | |
self.out_channels = dims | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, mean=0, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
if isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
if isinstance(m, nn.Conv2d): | |
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
def pool_h_2(self, x): | |
# x: B, C, H, W | |
x = x.mean(dim=2, keepdim=True) | |
x = F.avg_pool2d(x, kernel_size=(1, 2)) | |
return x # B, C, 1, W//2 | |
def forward(self, x): | |
if self.use_pool: | |
x = self.pool_h_2(x) | |
# for use guide | |
if self.use_guide: | |
z = x.detach() | |
else: | |
z = x | |
# for short cut | |
h = z | |
# reduce dim | |
z = self.conv1(z) | |
z = self.conv2(z) | |
# SVTR global block | |
B, C, H, W = z.shape | |
z = z.flatten(2).transpose(1, 2) | |
for blk in self.svtr_block: | |
z = blk(z) | |
z = self.norm(z) | |
# last stage | |
z = z.reshape(-1, H, W, C).permute(0, 3, 1, 2) | |
z = self.conv3(z) | |
z = torch.concat((h, z), dim=1) | |
z = self.conv1x1(self.conv4(z)) | |
return z | |
class CTCDecoder(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels=6625, | |
mid_channels=None, | |
return_feats=False, | |
svtr_encoder=None, | |
**kwargs): | |
super(CTCDecoder, self).__init__() | |
if svtr_encoder is not None: | |
svtr_encoder['in_channels'] = in_channels | |
self.svtr_encoder = EncoderWithSVTR(**svtr_encoder) | |
in_channels = self.svtr_encoder.out_channels | |
else: | |
self.svtr_encoder = None | |
if mid_channels is None: | |
self.fc = nn.Linear( | |
in_channels, | |
out_channels, | |
) | |
else: | |
self.fc1 = nn.Linear( | |
in_channels, | |
mid_channels, | |
) | |
self.fc2 = nn.Linear( | |
mid_channels, | |
out_channels, | |
) | |
self.out_channels = out_channels | |
self.mid_channels = mid_channels | |
self.return_feats = return_feats | |
def forward(self, x, data=None): | |
if self.svtr_encoder is not None: | |
x = self.svtr_encoder(x) | |
x = x.flatten(2).transpose(1, 2) | |
if self.mid_channels is None: | |
predicts = self.fc(x) | |
else: | |
x = self.fc1(x) | |
predicts = self.fc2(x) | |
if self.return_feats: | |
result = (x, predicts) | |
else: | |
result = predicts | |
if not self.training: | |
predicts = F.softmax(predicts, dim=2) | |
result = predicts | |
return result | |