Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
class ConvBNLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel, | |
stride=1, | |
act='ReLU'): | |
super(ConvBNLayer, self).__init__() | |
self.act_flag = act | |
self.conv = nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=2 if stride == (1, 1) else kernel, | |
stride=stride, | |
padding=(kernel - 1) // 2, | |
dilation=2 if stride == (1, 1) else 1) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.act = nn.ReLU(True) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
if self.act_flag != 'None': | |
x = self.act(x) | |
return x | |
class Shortcut(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, is_first=False): | |
super(Shortcut, self).__init__() | |
self.use_conv = True | |
if in_channels != out_channels or stride != 1 or is_first is True: | |
if stride == (1, 1): | |
self.conv = ConvBNLayer(in_channels, out_channels, 1, 1) | |
else: | |
self.conv = ConvBNLayer(in_channels, out_channels, 1, stride) | |
else: | |
self.use_conv = False | |
def forward(self, x): | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class BottleneckBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride): | |
super(BottleneckBlock, self).__init__() | |
self.conv0 = ConvBNLayer(in_channels, out_channels, kernel=1) | |
self.conv1 = ConvBNLayer(out_channels, | |
out_channels, | |
kernel=3, | |
stride=stride) | |
self.conv2 = ConvBNLayer(out_channels, | |
out_channels * 4, | |
kernel=1, | |
act='None') | |
self.short = Shortcut(in_channels, out_channels * 4, stride=stride) | |
self.out_channels = out_channels * 4 | |
self.relu = nn.ReLU(True) | |
def forward(self, x): | |
y = self.conv0(x) | |
y = self.conv1(y) | |
y = self.conv2(y) | |
y = y + self.short(x) | |
y = self.relu(y) | |
return y | |
class BasicBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, is_first): | |
super(BasicBlock, self).__init__() | |
self.conv0 = ConvBNLayer(in_channels, | |
out_channels, | |
kernel=3, | |
stride=stride) | |
self.conv1 = ConvBNLayer(out_channels, | |
out_channels, | |
kernel=3, | |
act='None') | |
self.short = Shortcut(in_channels, out_channels, stride, is_first) | |
self.out_chanels = out_channels | |
self.relu = nn.ReLU(True) | |
def forward(self, x): | |
y = self.conv0(x) | |
y = self.conv1(y) | |
y = y + self.short(x) | |
y = self.relu(y) | |
return y | |
class ResNet_FPN(nn.Module): | |
def __init__(self, in_channels=1, layers=50, **kwargs): | |
super(ResNet_FPN, self).__init__() | |
supported_layers = { | |
18: { | |
'depth': [2, 2, 2, 2], | |
'block_class': BasicBlock | |
}, | |
34: { | |
'depth': [3, 4, 6, 3], | |
'block_class': BasicBlock | |
}, | |
50: { | |
'depth': [3, 4, 6, 3], | |
'block_class': BottleneckBlock | |
}, | |
101: { | |
'depth': [3, 4, 23, 3], | |
'block_class': BottleneckBlock | |
}, | |
152: { | |
'depth': [3, 8, 36, 3], | |
'block_class': BottleneckBlock | |
} | |
} | |
stride_list = [(2, 2), ( | |
2, | |
2, | |
), (1, 1), (1, 1)] | |
num_filters = [64, 128, 256, 512] | |
self.depth = supported_layers[layers]['depth'] | |
self.F = [] | |
# print(f"in_channels:{in_channels}") | |
self.conv = ConvBNLayer(in_channels=in_channels, | |
out_channels=64, | |
kernel=7, | |
stride=2) #64*256 ->32*128 | |
self.block_list = nn.ModuleList() | |
in_ch = 64 | |
if layers >= 50: | |
for block in range(len(self.depth)): | |
for i in range(self.depth[block]): | |
self.block_list.append( | |
BottleneckBlock( | |
in_channels=in_ch, | |
out_channels=num_filters[block], | |
stride=stride_list[block] if i == 0 else 1)) | |
in_ch = num_filters[block] * 4 | |
else: | |
for block in range(len(self.depth)): | |
for i in range(self.depth[block]): | |
if i == 0 and block != 0: | |
stride = (2, 1) | |
else: | |
stride = (1, 1) | |
basic_block = BasicBlock( | |
in_channels=in_ch, | |
out_channels=num_filters[block], | |
stride=stride_list[block] if i == 0 else 1, | |
is_first=block == i == 0) | |
in_ch = basic_block.out_chanels | |
self.block_list.append(basic_block) | |
out_ch_list = [in_ch // 4, in_ch // 2, in_ch] | |
self.base_block = nn.ModuleList() | |
self.conv_trans = [] | |
self.bn_block = [] | |
for i in [-2, -3]: | |
in_channels = out_ch_list[i + 1] + out_ch_list[i] | |
self.base_block.append( | |
nn.Conv2d(in_channels, out_ch_list[i], kernel_size=1)) #进行升通道 | |
self.base_block.append( | |
nn.Conv2d(out_ch_list[i], | |
out_ch_list[i], | |
kernel_size=3, | |
padding=1)) #进行合并 | |
self.base_block.append( | |
nn.Sequential(nn.BatchNorm2d(out_ch_list[i]), nn.ReLU(True))) | |
self.base_block.append(nn.Conv2d(out_ch_list[i], 512, kernel_size=1)) | |
self.out_channels = 512 | |
def forward(self, x): | |
# print(f"before resnetfpn x.shape:{x.shape}") | |
x = self.conv(x) | |
fpn_list = [] | |
F = [] | |
for i in range(len(self.depth)): | |
fpn_list.append(np.sum(self.depth[:i + 1])) | |
for i, block in enumerate(self.block_list): | |
x = block(x) | |
for number in fpn_list: | |
if i + 1 == number: | |
F.append(x) | |
base = F[-1] | |
j = 0 | |
for i, block in enumerate(self.base_block): | |
if i % 3 == 0 and i < 6: | |
j = j + 1 | |
b, c, w, h = F[-j - 1].size() | |
if [w, h] == list(base.size()[2:]): | |
base = base | |
else: | |
base = self.conv_trans[j - 1](base) | |
base = self.bn_block[j - 1](base) | |
base = torch.cat([base, F[-j - 1]], dim=1) | |
base = block(base) | |
return base | |