Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from openrec.modeling.common import Activation | |
class ConvBNLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
act=None): | |
super(ConvBNLayer, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
bias=False, | |
) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.act = Activation(act) if act else None | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
if self.act is not None: | |
x = self.act(x) | |
return x | |
class LocalizationNetwork(nn.Module): | |
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): | |
super(LocalizationNetwork, self).__init__() | |
self.F = num_fiducial | |
F = num_fiducial | |
if model_name == 'large': | |
num_filters_list = [64, 128, 256, 512] | |
fc_dim = 256 | |
else: | |
num_filters_list = [16, 32, 64, 128] | |
fc_dim = 64 | |
self.block_list = nn.ModuleList() | |
for fno in range(0, len(num_filters_list)): | |
num_filters = num_filters_list[fno] | |
conv = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=num_filters, | |
kernel_size=3, | |
act='relu', | |
) | |
self.block_list.append(conv) | |
if fno == len(num_filters_list) - 1: | |
pool = nn.AdaptiveAvgPool2d(1) | |
else: | |
pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
in_channels = num_filters | |
self.block_list.append(pool) | |
self.fc1 = nn.Linear(in_channels, fc_dim) | |
# Init fc2 in LocalizationNetwork | |
self.fc2 = nn.Linear(fc_dim, F * 2) | |
initial_bias = self.get_initial_fiducials() | |
initial_bias = initial_bias.reshape(-1) | |
self.fc2.bias.data = torch.tensor(initial_bias, dtype=torch.float32) | |
nn.init.zeros_(self.fc2.weight.data) | |
self.out_channels = F * 2 | |
def forward(self, x): | |
""" | |
Estimating parameters of geometric transformation | |
Args: | |
image: input | |
Return: | |
batch_C_prime: the matrix of the geometric transformation | |
""" | |
for block in self.block_list: | |
x = block(x) | |
x = x.squeeze(dim=2).squeeze(dim=2) | |
x = self.fc1(x) | |
x = F.relu(x) | |
x = self.fc2(x) | |
x = x.reshape(shape=[-1, self.F, 2]) | |
return x | |
def get_initial_fiducials(self): | |
"""see RARE paper Fig. | |
6 (a) | |
""" | |
F = self.F | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) | |
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
return initial_bias | |
class GridGenerator(nn.Module): | |
def __init__(self, in_channels, num_fiducial): | |
super(GridGenerator, self).__init__() | |
self.eps = 1e-6 | |
self.F = num_fiducial | |
self.fc = nn.Linear(in_channels, 6) | |
nn.init.constant_(self.fc.weight, 0) | |
nn.init.constant_(self.fc.bias, 0) | |
self.fc.weight.requires_grad = False | |
self.fc.bias.requires_grad = False | |
def forward(self, batch_C_prime, I_r_size): | |
"""Generate the grid for the grid_sampler. | |
Args: | |
batch_C_prime: the matrix of the geometric transformation | |
I_r_size: the shape of the input image | |
Return: | |
batch_P_prime: the grid for the grid_sampler | |
""" | |
C = self.build_C_paddle() | |
P = self.build_P_paddle(I_r_size) | |
inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).float() | |
P_hat_tensor = self.build_P_hat_paddle(C, torch.tensor(P)).float() | |
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime) | |
batch_C_prime_with_zeros = torch.cat( | |
[batch_C_prime, batch_C_ex_part_tensor], dim=1) | |
batch_T = torch.matmul( | |
inv_delta_C_tensor.to(batch_C_prime_with_zeros.device), | |
batch_C_prime_with_zeros, | |
) | |
batch_P_prime = torch.matmul(P_hat_tensor.to(batch_T.device), batch_T) | |
return batch_P_prime | |
def build_C_paddle(self): | |
"""Return coordinates of fiducial points in I_r; C.""" | |
F = self.F | |
ctrl_pts_x = torch.linspace(-1.0, 1.0, int(F / 2), dtype=torch.float64) | |
ctrl_pts_y_top = -1 * torch.ones([int(F / 2)], dtype=torch.float64) | |
ctrl_pts_y_bottom = torch.ones([int(F / 2)], dtype=torch.float64) | |
ctrl_pts_top = torch.stack([ctrl_pts_x, ctrl_pts_y_top], dim=1) | |
ctrl_pts_bottom = torch.stack([ctrl_pts_x, ctrl_pts_y_bottom], dim=1) | |
C = torch.cat([ctrl_pts_top, ctrl_pts_bottom], dim=0) | |
return C # F x 2 | |
def build_P_paddle(self, I_r_size): | |
I_r_height, I_r_width = I_r_size | |
I_r_grid_x = (torch.arange(-I_r_width, I_r_width, 2) + | |
1.0) / torch.tensor(np.array([I_r_width])) | |
I_r_grid_y = (torch.arange(-I_r_height, I_r_height, 2) + | |
1.0) / torch.tensor(np.array([I_r_height])) | |
# P: self.I_r_width x self.I_r_height x 2 | |
P = torch.stack(torch.meshgrid(I_r_grid_x, I_r_grid_y), dim=2) | |
P = torch.permute(P, [1, 0, 2]) | |
# n (= self.I_r_width x self.I_r_height) x 2 | |
return P.reshape([-1, 2]) | |
def build_inv_delta_C_paddle(self, C): | |
"""Return inv_delta_C which is needed to calculate T.""" | |
F = self.F | |
hat_eye = torch.eye(F) # F x F | |
hat_C = torch.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), | |
dim=2) + hat_eye | |
hat_C = (hat_C**2) * torch.log(hat_C) | |
delta_C = torch.cat( # F+3 x F+3 | |
[ | |
torch.cat([torch.ones((F, 1)), C, hat_C], dim=1), # F x F+3 | |
torch.concat([torch.zeros( | |
(2, 3)), C.transpose(0, 1)], dim=1), # 2 x F+3 | |
torch.concat([torch.zeros( | |
(1, 3)), torch.ones((1, F))], dim=1), # 1 x F+3 | |
], | |
axis=0, | |
) | |
inv_delta_C = torch.inverse(delta_C) | |
return inv_delta_C # F+3 x F+3 | |
def build_P_hat_paddle(self, C, P): | |
F = self.F | |
eps = self.eps | |
n = P.shape[0] # n (= self.I_r_width x self.I_r_height) | |
# P_tile: n x 2 -> n x 1 x 2 -> n x F x 2 | |
P_tile = torch.tile(torch.unsqueeze(P, dim=1), (1, F, 1)) | |
C_tile = torch.unsqueeze(C, dim=0) # 1 x F x 2 | |
P_diff = P_tile - C_tile # n x F x 2 | |
# rbf_norm: n x F | |
rbf_norm = torch.norm(P_diff, p=2, dim=2, keepdim=False) | |
# rbf: n x F | |
rbf = torch.multiply(torch.square(rbf_norm), torch.log(rbf_norm + eps)) | |
P_hat = torch.cat([torch.ones((n, 1)), P, rbf], dim=1) | |
return P_hat # n x F+3 | |
def get_expand_tensor(self, batch_C_prime): | |
B, H, C = batch_C_prime.shape | |
batch_C_prime = batch_C_prime.reshape([B, H * C]) | |
batch_C_ex_part_tensor = self.fc(batch_C_prime) | |
batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2]) | |
return batch_C_ex_part_tensor | |
class TPS(nn.Module): | |
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): | |
super(TPS, self).__init__() | |
self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr, | |
model_name) | |
self.grid_generator = GridGenerator(self.loc_net.out_channels, | |
num_fiducial) | |
self.out_channels = in_channels | |
def forward(self, image): | |
image.stop_gradient = False | |
batch_C_prime = self.loc_net(image) | |
batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:]) | |
batch_P_prime = batch_P_prime.reshape( | |
[-1, image.shape[2], image.shape[3], 2]) | |
is_fp16 = False | |
if batch_P_prime.dtype != torch.float32: | |
data_type = batch_P_prime.dtype | |
image = image.float() | |
batch_P_prime = batch_P_prime.float() | |
is_fp16 = True | |
batch_I_r = F.grid_sample(image, grid=batch_P_prime) | |
if is_fp16: | |
batch_I_r = batch_I_r.astype(data_type) | |
return batch_I_r | |