Spaces:
Running
Running
import numpy as np | |
import torch | |
from .ctc_postprocess import BaseRecLabelDecode | |
class CharLabelDecode(BaseRecLabelDecode): | |
"""Convert between text-label and text-index.""" | |
def __init__(self, | |
character_dict_path=None, | |
use_space_char=True, | |
**kwargs): | |
super(CharLabelDecode, self).__init__(character_dict_path, | |
use_space_char) | |
def __call__(self, preds, label=None, *args, **kwargs): | |
if len(preds) >= 4: | |
preds_id = preds[0] | |
preds_prob = preds[1] | |
char_preds = preds[2] | |
if isinstance(preds_id, torch.Tensor): | |
preds_id = preds_id.numpy() | |
if isinstance(preds_prob, torch.Tensor): | |
preds_prob = preds_prob.numpy() | |
if preds_id[0][0] == 2: | |
preds_idx = preds_id[:, 1:] | |
preds_prob = preds_prob[:, 1:] | |
# char_preds = char_preds[:, 1:] | |
else: | |
preds_idx = preds_id | |
char_preds = char_preds.numpy() | |
char_preds_idx = char_preds.argmax(-1) + 4 | |
char_preds_prob = char_preds.max(-1) | |
text, text_box = self.decode(preds_idx, preds_prob, char_preds_idx, | |
char_preds_prob) | |
else: | |
preds_logit = preds[0].numpy() | |
char_preds = preds[1].numpy() | |
# if isinstance(preds, torch.Tensor): | |
# preds = preds.numpy() | |
preds_idx = preds_logit.argmax(axis=2) | |
preds_prob = preds_logit.max(axis=2) | |
char_preds_idx = char_preds.argmax(-1) + 4 | |
char_preds_prob = char_preds.max(-1) | |
text, text_box = self.decode(preds_idx, preds_prob, char_preds_idx, | |
char_preds_prob) | |
if label is None: | |
return text, text_box | |
label = self.decode(label[:, 1:]) | |
return text, text_box, label | |
def add_special_char(self, dict_character): | |
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character | |
return dict_character | |
def decode( | |
self, | |
text_index, | |
text_prob=None, | |
char_text_index=None, | |
char_text_prob=None, | |
is_remove_duplicate=False, | |
): | |
"""convert text-index into text-label.""" | |
result_list = [] | |
box_result_list = [] | |
batch_size = len(text_index) | |
for batch_idx in range(batch_size): | |
char_list = [] | |
conf_list = [] | |
char_box_list = [] | |
conf_box_list = [] | |
for idx in range(len(text_index[batch_idx])): | |
try: | |
char_idx = self.character[int(text_index[batch_idx][idx])] | |
if char_text_index is not None: | |
char_box_idx = self.character[int( | |
char_text_index[batch_idx][idx])] | |
except: | |
continue | |
if char_idx == '</s>': # end | |
break | |
char_list.append(char_idx) | |
if char_text_index is not None: | |
char_box_list.append(char_box_idx) | |
if text_prob is not None: | |
conf_list.append(text_prob[batch_idx][idx]) | |
else: | |
conf_list.append(1) | |
if char_text_prob is not None: | |
conf_box_list.append(char_text_prob[batch_idx][idx]) | |
else: | |
conf_box_list.append(1) | |
text = ''.join(char_list) | |
result_list.append((text, np.mean(conf_list).tolist())) | |
if char_text_index is not None: | |
text_box = ''.join(char_box_list) | |
box_result_list.append( | |
(text_box, np.mean(conf_box_list).tolist())) | |
if char_text_index is not None: | |
return result_list, box_result_list | |
return result_list | |