Spaces:
Running
Running
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from pathlib import Path | |
import time | |
import numpy as np | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
os.environ['FLAGS_allocator_strategy'] = 'auto_growth' | |
import cv2 | |
import json | |
import torch | |
from tools.engine import Config | |
from tools.utility import ArgsParser | |
from tools.utils.ckpt import load_ckpt | |
from tools.utils.logging import get_logger | |
from tools.utils.utility import get_image_file_list | |
logger = get_logger() | |
root_dir = Path(__file__).resolve().parent | |
DEFAULT_CFG_PATH_DET = str(root_dir / '../configs/det/dbnet/repvit_db.yml') | |
MODEL_NAME_DET = './openocr_det_repvit_ch.pth' # 模型文件名称 | |
DOWNLOAD_URL_DET = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth' # 模型文件 URL | |
def check_and_download_model(model_name: str, url: str): | |
""" | |
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。 | |
Args: | |
model_name (str): 模型文件的名称,例如 "model.pt" | |
url (str): 模型文件的下载地址 | |
Returns: | |
str: 模型文件的完整路径 | |
""" | |
if os.path.exists(model_name): | |
return model_name | |
# 固定缓存路径为用户主目录下的 ".cache/openocr" | |
cache_dir = Path.home() / '.cache' / 'openocr' | |
model_path = cache_dir / model_name | |
# 如果模型文件已存在,直接返回路径 | |
if model_path.exists(): | |
logger.info(f'Model already exists at: {model_path}') | |
return str(model_path) | |
# 如果文件不存在,下载模型 | |
logger.info(f'Model not found. Downloading from {url}...') | |
# 创建缓存目录(如果不存在) | |
cache_dir.mkdir(parents=True, exist_ok=True) | |
try: | |
# 下载文件 | |
import urllib.request | |
with urllib.request.urlopen(url) as response, open(model_path, | |
'wb') as out_file: | |
out_file.write(response.read()) | |
logger.info(f'Model downloaded and saved at: {model_path}') | |
return str(model_path) | |
except Exception as e: | |
logger.error(f'Error downloading the model: {e}') | |
# 提示用户手动下载 | |
logger.error( | |
f'Unable to download the model automatically. ' | |
f'Please download the model manually from the following URL:\n{url}\n' | |
f'and save it to: {model_name} or {model_path}') | |
raise RuntimeError( | |
f'Failed to download the model. Please download it manually from {url} ' | |
f'and save it to {model_path}') from e | |
def replace_batchnorm(net): | |
for child_name, child in net.named_children(): | |
if hasattr(child, 'fuse'): | |
fused = child.fuse() | |
setattr(net, child_name, fused) | |
replace_batchnorm(fused) | |
elif isinstance(child, torch.nn.BatchNorm2d): | |
setattr(net, child_name, torch.nn.Identity()) | |
else: | |
replace_batchnorm(child) | |
def padding_image(img, size=(640, 640)): | |
""" | |
Padding an image using OpenCV: | |
- If the image is smaller than the target size, pad it to 640x640. | |
- If the image is larger than the target size, split it into multiple 640x640 images and record positions. | |
:param image_path: Path to the input image. | |
:param output_dir: Directory to save the output images. | |
:param size: The target size for padding or splitting (default 640x640). | |
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image. | |
""" | |
img_height, img_width = img.shape[:2] | |
target_width, target_height = size | |
# If image is smaller than target size, pad the image to 640x640 | |
# Calculate padding amounts (top, bottom, left, right) | |
pad_top = 0 | |
pad_bottom = target_height - img_height | |
pad_left = 0 | |
pad_right = target_width - img_width | |
# Pad the image (white padding, border type: constant) | |
padded_img = cv2.copyMakeBorder(img, | |
pad_top, | |
pad_bottom, | |
pad_left, | |
pad_right, | |
cv2.BORDER_CONSTANT, | |
value=[0, 0, 0]) | |
# Return the padded area positions (top-left and bottom-right coordinates of the original image) | |
return padded_img | |
def resize_image(img, size=(640, 640), over_lap=64): | |
""" | |
Resize an image using OpenCV: | |
- If the image is smaller than the target size, pad it to 640x640. | |
- If the image is larger than the target size, split it into multiple 640x640 images and record positions. | |
:param image_path: Path to the input image. | |
:param output_dir: Directory to save the output images. | |
:param size: The target size for padding or splitting (default 640x640). | |
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image. | |
""" | |
img_height, img_width = img.shape[:2] | |
target_width, target_height = size | |
# If image is smaller than target size, pad the image to 640x640 | |
if img_width <= target_width and img_height <= target_height: | |
# Calculate padding amounts (top, bottom, left, right) | |
if img_width == target_width and img_height == target_height: | |
return [img], [[0, 0, img_width, img_height]] | |
padded_img = padding_image(img, size) | |
# Return the padded area positions (top-left and bottom-right coordinates of the original image) | |
return [padded_img], [[0, 0, img_width, img_height]] | |
img_height, img_width = img.shape[:2] | |
# If image is larger than or equal to target size, crop it into 640x640 tiles | |
crop_positions = [] | |
count = 0 | |
cropped_img_list = [] | |
for top in range(0, img_height - over_lap, target_height - over_lap): | |
for left in range(0, img_width - over_lap, target_width - over_lap): | |
# Calculate the bottom and right boundaries for the crop | |
right = min(left + target_width, img_width) | |
bottom = min(top + target_height, img_height) | |
if right >= img_width: | |
right = img_width | |
left = max(0, right - target_width) | |
if bottom >= img_height: | |
bottom = img_height | |
top = max(0, bottom - target_height) | |
# Crop the image | |
cropped_img = img[top:bottom, left:right] | |
if bottom - top < target_height or right - left < target_width: | |
cropped_img = padding_image(cropped_img, size) | |
count += 1 | |
cropped_img_list.append(cropped_img) | |
# Record the position of the cropped image | |
crop_positions.append([left, top, right, bottom]) | |
return cropped_img_list, crop_positions | |
def restore_preds(preds, crop_positions, original_size): | |
restored_pred = torch.zeros((1, 1, original_size[0], original_size[1]), | |
dtype=preds.dtype, | |
device=preds.device) | |
count = 0 | |
for cropped_pred, (left, top, right, bottom) in zip(preds, crop_positions): | |
crop_height = bottom - top | |
crop_width = right - left | |
corp_vis_img = cropped_pred[:, :crop_height, :crop_width] | |
mask = corp_vis_img > 0.3 | |
count += 1 | |
restored_pred[:, :, top:top + crop_height, left:left + | |
crop_width] += mask[:, :crop_height, :crop_width].to( | |
preds.dtype) | |
return restored_pred | |
def draw_det_res(dt_boxes, img, img_name, save_path): | |
src_im = img | |
for box in dt_boxes: | |
box = np.array(box).astype(np.int32).reshape((-1, 1, 2)) | |
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
save_path = os.path.join(save_path, os.path.basename(img_name)) | |
cv2.imwrite(save_path, src_im) | |
def set_device(device, numId=0): | |
if device == 'gpu' and torch.cuda.is_available(): | |
device = torch.device(f'cuda:{numId}') | |
else: | |
logger.info('GPU is not available, using CPU.') | |
device = torch.device('cpu') | |
return device | |
class OpenDetector(object): | |
def __init__(self, config=None, numId=0): | |
""" | |
初始化函数。 | |
Args: | |
config (dict, optional): 配置文件,默认为None。如果为None,则使用默认配置文件。 | |
numId (int, optional): 设备编号,默认为0。 | |
Returns: | |
None | |
Raises: | |
无 | |
""" | |
if config is None: | |
config = Config(DEFAULT_CFG_PATH_DET).cfg | |
if not os.path.exists(config['Global']['pretrained_model']): | |
config['Global']['pretrained_model'] = check_and_download_model( | |
MODEL_NAME_DET, DOWNLOAD_URL_DET) | |
from opendet.modeling import build_model as build_det_model | |
from opendet.postprocess import build_post_process | |
from opendet.preprocess import create_operators, transform | |
self.transform = transform | |
global_config = config['Global'] | |
# build model | |
self.model = build_det_model(config['Architecture']) | |
self.model.eval() | |
load_ckpt(self.model, config) | |
replace_batchnorm(self.model.backbone) | |
self.device = set_device(config['Global']['device'], numId=numId) | |
self.model.to(device=self.device) | |
# create data ops | |
transforms = [] | |
for op in config['Eval']['dataset']['transforms']: | |
op_name = list(op)[0] | |
if 'Label' in op_name: | |
continue | |
elif op_name == 'KeepKeys': | |
op[op_name]['keep_keys'] = ['image', 'shape'] | |
transforms.append(op) | |
self.ops = create_operators(transforms, global_config) | |
# build post process | |
self.post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
def crop_infer( | |
self, | |
img_path=None, | |
img_numpy_list=None, | |
img_numpy=None, | |
): | |
if img_numpy is not None: | |
img_numpy_list = [img_numpy] | |
num_img = 1 | |
elif img_path is not None: | |
num_img = len(img_path) | |
elif img_numpy_list is not None: | |
num_img = len(img_numpy_list) | |
else: | |
raise Exception('No input image path or numpy array.') | |
results = [] | |
for img_idx in range(num_img): | |
if img_numpy_list is not None: | |
img = img_numpy_list[img_idx] | |
data = {'image': img} | |
elif img_path is not None: | |
with open(img_path[img_idx], 'rb') as f: | |
img = f.read() | |
data = {'image': img} | |
data = self.transform(data, self.ops[:1]) | |
src_img_ori = data['image'] | |
img_height, img_width = src_img_ori.shape[:2] | |
target_size = 640 | |
over_lap = 64 | |
if img_height > img_width: | |
r_h = target_size * 2 - over_lap | |
r_w = img_width * (target_size * 2 - over_lap) // img_height | |
else: | |
r_w = target_size * 2 - over_lap | |
r_h = img_height * (target_size * 2 - over_lap) // img_width | |
src_img = cv2.resize(src_img_ori, (r_w, r_h)) | |
shape_list_ori = np.array([[ | |
img_height, img_width, | |
float(r_h) / img_height, | |
float(r_w) / img_width | |
]]) | |
img_height, img_width = src_img.shape[:2] | |
cropped_img_list, crop_positions = resize_image(src_img, | |
size=(target_size, | |
target_size), | |
over_lap=over_lap) | |
image_list = [] | |
shape_list = [] | |
for img in cropped_img_list: | |
batch_i = self.transform({'image': img}, self.ops[-3:-1]) | |
image_list.append(batch_i['image']) | |
shape_list.append([640, 640, 1, 1]) | |
images = np.array(image_list) | |
shape_list = np.array(shape_list) | |
images = torch.from_numpy(images).to(device=self.device) | |
with torch.no_grad(): | |
t_start = time.time() | |
preds = self.model(images) | |
t_cost = time.time() - t_start | |
preds['maps'] = restore_preds(preds['maps'], crop_positions, | |
(img_height, img_width)) | |
post_result = self.post_process_class(preds, shape_list_ori) | |
info = {'boxes': post_result[0]['points'], 'elapse': t_cost} | |
results.append(info) | |
return results | |
def __call__(self, | |
img_path=None, | |
img_numpy_list=None, | |
img_numpy=None, | |
return_mask=False, | |
**kwargs): | |
""" | |
对输入图像进行处理,并返回处理结果。 | |
Args: | |
img_path (str, optional): 图像文件路径。默认为 None。 | |
img_numpy_list (list, optional): 图像数据列表,每个元素为 numpy 数组。默认为 None。 | |
img_numpy (numpy.ndarray, optional): 图像数据,numpy 数组格式。默认为 None。 | |
Returns: | |
list: 包含处理结果的列表。每个元素为一个字典,包含 'boxes' 和 'elapse' 两个键。 | |
'boxes' 的值为检测到的目标框点集,'elapse' 的值为处理时间。 | |
Raises: | |
Exception: 若没有提供图像路径或 numpy 数组,则抛出异常。 | |
""" | |
if img_numpy is not None: | |
img_numpy_list = [img_numpy] | |
num_img = 1 | |
elif img_path is not None: | |
img_path = get_image_file_list(img_path) | |
num_img = len(img_path) | |
elif img_numpy_list is not None: | |
num_img = len(img_numpy_list) | |
else: | |
raise Exception('No input image path or numpy array.') | |
results = [] | |
for img_idx in range(num_img): | |
if img_numpy_list is not None: | |
img = img_numpy_list[img_idx] | |
data = {'image': img} | |
elif img_path is not None: | |
with open(img_path[img_idx], 'rb') as f: | |
img = f.read() | |
data = {'image': img} | |
data = self.transform(data, self.ops[:1]) | |
batch = self.transform(data, self.ops[1:]) | |
images = np.expand_dims(batch[0], axis=0) | |
shape_list = np.expand_dims(batch[1], axis=0) | |
images = torch.from_numpy(images).to(device=self.device) | |
with torch.no_grad(): | |
t_start = time.time() | |
preds = self.model(images) | |
t_cost = time.time() - t_start | |
post_result = self.post_process_class(preds, shape_list, **kwargs) | |
info = {'boxes': post_result[0]['points'], 'elapse': t_cost} | |
if return_mask: | |
if isinstance(preds['maps'], torch.Tensor): | |
mask = preds['maps'].detach().cpu().numpy() | |
else: | |
mask = preds['maps'] | |
info['mask'] = mask | |
results.append(info) | |
return results | |
def main(cfg): | |
is_visualize = cfg['Global'].get('is_visualize', False) | |
model = OpenDetector(cfg) | |
save_res_path = './det_results/' | |
if not os.path.exists(save_res_path): | |
os.makedirs(save_res_path) | |
sample_num = 0 | |
with open(save_res_path + '/det_results.txt', 'wb') as fout: | |
for file in get_image_file_list(cfg['Global']['infer_img']): | |
preds_result = model(img_path=file)[0] | |
logger.info('{} infer_img: {}, time cost: {}'.format( | |
sample_num, file, preds_result['elapse'])) | |
boxes = preds_result['boxes'] | |
dt_boxes_json = [] | |
for box in boxes: | |
tmp_json = {} | |
tmp_json['points'] = np.array(box).tolist() | |
dt_boxes_json.append(tmp_json) | |
if is_visualize: | |
src_img = cv2.imread(file) | |
draw_det_res(boxes, src_img, file, save_res_path) | |
logger.info('The detected Image saved in {}'.format( | |
os.path.join(save_res_path, os.path.basename(file)))) | |
otstr = file + '\t' + json.dumps(dt_boxes_json) + '\n' | |
logger.info('results: {}'.format(json.dumps(dt_boxes_json))) | |
fout.write(otstr.encode()) | |
sample_num += 1 | |
logger.info( | |
f"Results saved to {os.path.join(save_res_path, 'det_results.txt')}.)" | |
) | |
logger.info('success!') | |
if __name__ == '__main__': | |
FLAGS = ArgsParser().parse_args() | |
cfg = Config(FLAGS.config) | |
FLAGS = vars(FLAGS) | |
opt = FLAGS.pop('opt') | |
cfg.merge_dict(FLAGS) | |
cfg.merge_dict(opt) | |
main(cfg.cfg) | |