File size: 6,064 Bytes
3542be4
 
 
d472855
3542be4
 
 
 
31877a7
25db6c9
00c86c6
0c23f7f
27419c1
3542be4
953a099
402fe71
 
 
 
 
 
 
 
 
25db6c9
 
31877a7
 
402fe71
2bd18a2
953a099
 
c7df0ab
25db6c9
 
 
 
 
953a099
c7df0ab
953a099
85949b2
 
6e57b9c
953a099
 
 
 
402fe71
25db6c9
402fe71
 
 
 
 
25db6c9
402fe71
 
0c23f7f
 
 
 
 
3515ae5
402fe71
 
 
25db6c9
402fe71
 
 
d472855
402fe71
d472855
402fe71
 
 
 
 
 
 
 
a50b44f
 
402fe71
6dbbd62
 
06642da
25db6c9
 
4948a0e
6dbbd62
 
776de3e
 
6dbbd62
 
 
27419c1
 
25db6c9
 
 
 
27419c1
402fe71
2b32e3d
 
 
 
 
 
 
 
 
 
5826348
25db6c9
 
 
 
 
 
 
4469e93
 
402fe71
72dca33
402fe71
72dca33
402fe71
72dca33
2b32e3d
72dca33
2b32e3d
25db6c9
 
 
 
 
 
f091221
 
 
6dbbd62
f091221
 
 
 
25db6c9
 
 
2b32e3d
2098e9c
25db6c9
2b32e3d
 
402fe71
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL
from PIL import Image
import os
import time

from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation, canny_process

from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis



path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)

# dl_cn_model(cn_dir)
# dl_cn_config(cn_dir)
dl_tagger_model(tagger_dir)
dl_lora_model(lora_dir)

def load_model(lora_dir, cn_dir):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    # controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
    controlnet = ControlNetModel.from_pretrained(
        "diffusers/controlnet-canny-sdxl-1.0",
        torch_dtype=torch.float16
    )
    pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
        "cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
    )
    pipe.load_lora_weights(lora_dir, weight_name="sdxl_BWLine.safetensors")
    pipe.set_adapters(["sdxl_BWLine"], adapter_weights=[1.4])
    pipe.fuse_lora()
    pipe = pipe.to(device)
    return pipe


@spaces.GPU
def predict(input_image_path, canny_image, prompt, negative_prompt, controlnet_scale):
    pipe = load_model(lora_dir, cn_dir) 
    input_image_pil = Image.open(input_image_path)
    base_size = input_image_pil.size
    resize_image = resize_image_aspect_ratio(input_image_pil)
    white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
    canny_image = canny_image.resize(resize_image.size, Image.LANCZOS)
    generator = torch.manual_seed(0)
    last_time = time.time()
    prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt
    execute_tags = ["sketch", "transparent background"]
    prompt = execute_prompt(execute_tags, prompt)
    prompt = remove_duplicates(prompt)        
    prompt = remove_color(prompt)
    print(prompt)

    output_image = pipe(
        image=white_base_pil,
        control_image=canny_image,
        strength=1.0,
        prompt=prompt,
        negative_prompt = negative_prompt,
        controlnet_conditioning_scale=float(controlnet_scale),
        generator=generator,
        num_inference_steps=30,
        eta=1.0,
    ).images[0]
    print(f"Time taken: {time.time() - last_time}")
    output_image = output_image.resize(base_size, Image.LANCZOS)
    return output_image



class Img2Img:
    def __init__(self):
        self.demo = self.layout()
        self.post_filter = True
        self.tagger_model = None
        self.input_image_path = None
        self.canny_image = None


    def process_prompt_analysis(self, input_image_path):
        if self.tagger_model is None:
            self.tagger_model = modelLoad(tagger_dir)
        tags = analysis(input_image_path, tagger_dir, self.tagger_model)
        tags_list = tags      
        if self.post_filter:
            tags_list = remove_color(tags)
        return tags_list

    def _make_canny(self, img_path, canny_threshold1, canny_threshold2):
        threshold1 = int(canny_threshold1)
        threshold2 = int(canny_threshold2)
        return canny_process(img_path, threshold1, threshold2)

    def layout(self):
        css = """
        #intro{
            max-width: 32rem;
            text-align: center;
            margin: 0 auto;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column():
                    self.input_image_path = gr.Image(label="input_image", type='filepath')
                    self.canny_image = gr.Image(label="canny_image", type='pil')
                    with gr.Row():
                        canny_threshold1 = gr.Slider(minimum=0, value=20, maximum=253, show_label=False)
                        gr.HTML(value="<span>/</span>", show_label=False)
                        canny_threshold2 = gr.Slider(minimum=0, value=120, maximum=254, show_label=False)
                        canny_generate_button = gr.Button("canny_generate", interactive=False)

                    self.prompt = gr.Textbox(label="prompt", lines=3)
                    self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")

                    prompt_analysis_button = gr.Button("prompt_analysis")

                    self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="controlnet_scale")
                    
                    generate_button = gr.Button("generate")
                with gr.Column():
                    self.output_image = gr.Image(type="pil", label="output_image")

            canny_generate_button.click(
                        self.process_prompt_analysis,
                        inputs=[self.input_image, canny_threshold1, canny_threshold2],
                        outputs=self.canny_image
            )


            prompt_analysis_button.click(
                        self.process_prompt_analysis,
                        inputs=[self.input_image_path],
                        outputs=self.prompt
            )





            generate_button.click(
                fn=predict,
                inputs=[self.input_image_path, self.canny_image, self.prompt, self.negative_prompt, self.controlnet_scale],
                outputs=self.output_image
            )
        return demo



img2img = Img2Img()
img2img.demo.launch(share=True)