Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,898 Bytes
00c86c6 25db6c9 00c86c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from PIL import Image, ImageOps
import numpy as np
import cv2
def canny_process(image_path, threshold1, threshold2):
# 画像を開き、RGBA形式に変換して透過情報を保持
img = Image.open(image_path)
img = img.convert("RGBA")
canvas_image = Image.new('RGBA', img.size, (255, 255, 255, 255))
# 画像をキャンバスにペーストし、透過部分が白色になるように設定
canvas_image.paste(img, (0, 0), img)
# RGBAからRGBに変換し、透過部分を白色にする
image_pil = canvas_image.convert("RGB")
image_np = np.array(image_pil)
# グレースケール変換
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
# Cannyエッジ検出
edges = cv2.Canny(gray, threshold1, threshold2)
canny = Image.fromarray(edges)
return canny
def resize_image_aspect_ratio(image):
# 元の画像サイズを取得
original_width, original_height = image.size
# アスペクト比を計算
aspect_ratio = original_width / original_height
# 標準のアスペクト比サイズを定義
sizes = {
1: (1024, 1024), # 正方形
4/3: (1152, 896), # 横長画像
3/2: (1216, 832),
16/9: (1344, 768),
21/9: (1568, 672),
3/1: (1728, 576),
1/4: (512, 2048), # 縦長画像
1/3: (576, 1728),
9/16: (768, 1344),
2/3: (832, 1216),
3/4: (896, 1152)
}
# 最も近いアスペクト比を見つける
closest_aspect_ratio = min(sizes.keys(), key=lambda x: abs(x - aspect_ratio))
target_width, target_height = sizes[closest_aspect_ratio]
# リサイズ処理
resized_image = image.resize((target_width, target_height), Image.LANCZOS)
return resized_image
def base_generation(size, color):
canvas = Image.new("RGBA", size, color)
return canvas |