File size: 6,813 Bytes
369edb1
 
 
2d9bada
369edb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1ec11
2d9bada
 
f68a8d0
2d9bada
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1ec11
 
 
 
 
 
 
 
f68a8d0
2a1ec11
98a50a9
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9bada
 
f68a8d0
 
 
 
 
a50b44f
 
402fe71
6dbbd62
06642da
543d5ec
4948a0e
b2790c5
 
 
 
 
2a1ec11
b2790c5
 
 
27419c1
402fe71
2b32e3d
 
 
 
 
 
 
 
 
 
b2790c5
2a1ec11
63bfd3a
906508c
543d5ec
 
 
 
 
906508c
543d5ec
 
63bfd3a
ef92e8a
63bfd3a
543d5ec
63bfd3a
543d5ec
2b32e3d
63bfd3a
2b32e3d
f091221
543d5ec
906508c
543d5ec
f091221
 
2b32e3d
f68a8d0
a9deb63
2b32e3d
 
402fe71
 
543d5ec
 
 
 
 
 
402fe71
edcfd06
2d9bada
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
from PIL import Image
import os
import time
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation, background_removal
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis

path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)

dl_cn_model(cn_dir)
dl_cn_config(cn_dir)
dl_tagger_model(tagger_dir)
dl_lora_model(lora_dir)

# グローバル変数でpipeを管理
pipe = None
current_lora_model = None

def load_model(lora_model):
    global pipe, current_lora_model
    # 既にロードされたpipeがあり、同じLoRAモデルの場合は再利用
    if pipe is not None and current_lora_model == lora_model:
        return pipe  # キャッシュされたpipeを返す

    # 新しいpipeの生成
    dtype = torch.float16
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
    controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)

    pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
        "cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=dtype
    )
    pipe.enable_model_cpu_offload()

    # LoRAモデルの設定
    if lora_model == "少女漫画風":
        pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors", adapter_name="tori29umai_line")
        pipe.set_adapters(["tori29umai_line"], adapter_weights=[1.0])
    elif lora_model == "プレーン":
        pass  # プレーンの場合はLoRAを読み込まない

    # 現在のLoRAモデルを保存
    current_lora_model = lora_model
    return pipe

@spaces.GPU(duration=120)
def predict(lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
    # pipeをグローバル変数から取得
    pipe = load_model(lora_model)
    
    # 画像読み込みとリサイズ
    input_image = Image.open(input_image_path)
    base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
    resize_image = resize_image_aspect_ratio(input_image)
    resize_base_image = resize_image_aspect_ratio(base_image)
    generator = torch.manual_seed(0)
    last_time = time.time()

    # LoRAモデルの設定
    if lora_model == "少女漫画風":
        prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, bright pupils, " + prompt  
    elif lora_model == "プレーン":
        # プロンプト生成
        prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, " + prompt  

    

    
    execute_tags = ["realistic", "nose", "asian"]
    prompt = execute_prompt(execute_tags, prompt)
    prompt = remove_duplicates(prompt)        
    prompt = remove_color(prompt)
    print(prompt)

    # 画像生成
    output_image = pipe(
        image=resize_base_image,
        control_image=resize_image,
        strength=1.0,
        prompt=prompt,
        negative_prompt=negative_prompt,
        controlnet_conditioning_scale=float(controlnet_scale),
        generator=generator,
        num_inference_steps=30,
        eta=1.0,
    ).images[0]
    print(f"Time taken: {time.time() - last_time}")
    output_image = output_image.resize(input_image.size, Image.LANCZOS)
    return output_image

class Img2Img:
    def __init__(self):
        self.demo = self.layout()
        self.tagger_model = None
        self.input_image_path = None
        self.bg_removed_image = None

    def process_prompt_analysis(self, input_image_path):
        if self.tagger_model is None:
            self.tagger_model = modelLoad(tagger_dir)
        tags = analysis(input_image_path, tagger_dir, self.tagger_model)
        prompt = remove_color(tags)
        execute_tags = ["realistic", "nose", "asian", "smile"]
        prompt = execute_prompt(execute_tags, prompt)
        prompt = remove_duplicates(prompt)
        return prompt

    def layout(self):
        css = """
        #intro{
            max-width: 32rem;
            text-align: center;
            margin: 0 auto;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column():
                    # LoRAモデル選択ドロップダウン
                    self.lora_model = gr.Dropdown(label="Image Style",  choices=["少女漫画風", "プレーン"], value="少女漫画風")
                    self.input_image_path = gr.Image(label="Input image", type='filepath')
                    self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
                    
                    # 自動背景除去トリガー
                    self.input_image_path.change(
                        fn=self.auto_background_removal,
                        inputs=[self.input_image_path],
                        outputs=[self.bg_removed_image_path]
                    )

                    self.prompt = gr.Textbox(label="Prompt", lines=3)
                    self.negative_prompt = gr.Textbox(label="Negative prompt", lines=3, value="nose, asian, realistic, lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
                    prompt_analysis_button = gr.Button("Prompt analysis")
                    self.controlnet_scale = gr.Slider(minimum=0.4, maximum=1.0, value=0.55, step=0.01, label="Photo fidelity")                 
                    generate_button = gr.Button(value="Generate", variant="primary")

                with gr.Column():
                    self.output_image = gr.Image(type="pil", label="Output image")

            prompt_analysis_button.click(
                fn=self.process_prompt_analysis,
                inputs=[self.bg_removed_image_path],
                outputs=self.prompt
            )

            generate_button.click(
                fn=predict,
                inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
                outputs=self.output_image
            )
        return demo

    def auto_background_removal(self, input_image_path):
        if input_image_path is not None:
            bg_removed_image = background_removal(input_image_path)
            return bg_removed_image
        return None

img2img = Img2Img()
img2img.demo.queue()
img2img.demo.launch(share=True)