File size: 7,767 Bytes
369edb1
 
 
 
f98bb34
369edb1
 
 
 
 
 
 
 
f98bb34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369edb1
 
 
 
 
 
 
 
 
 
 
 
 
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7108a6a
 
f68a8d0
 
 
 
7108a6a
 
 
f68a8d0
7108a6a
 
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0511af3
98a50a9
f68a8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7108a6a
 
 
f68a8d0
 
 
 
 
a50b44f
 
402fe71
6dbbd62
06642da
543d5ec
4948a0e
b2790c5
 
 
 
 
 
 
 
 
27419c1
402fe71
2b32e3d
 
 
 
 
 
 
 
 
 
b2790c5
dd5cc2b
63bfd3a
906508c
543d5ec
 
 
 
 
906508c
543d5ec
 
63bfd3a
ef92e8a
63bfd3a
543d5ec
63bfd3a
543d5ec
2b32e3d
63bfd3a
2b32e3d
f091221
543d5ec
906508c
543d5ec
f091221
 
2b32e3d
f68a8d0
a9deb63
2b32e3d
 
402fe71
 
543d5ec
 
 
 
 
 
402fe71
edcfd06
402fe71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL

from PIL import Image
import os
import time
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation, background_removal
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis

import pygit2
import shutil
import os

# クローンするリポジトリのURLと保存先のパス
repo_url = "https://github.com/jabir-zheng/TCD.git"
repo_dir = "TCD"

# Git リポジトリをクローン
repo = pygit2.clone_repository(repo_url, repo_dir)

# 現在の作業ディレクトリを取得
current_dir = os.getcwd()

# Git関連のファイル(.git)を無視するための関数
def ignore_git_files(path, names):
    return [name for name in names if name == '.git']

# クローンしたリポジトリの内容を現在のディレクトリにコピー
shutil.copytree(repo_dir, current_dir, ignore=ignore_git_files)

# コピーが完了したことを表示
print(f"Repository contents (excluding .git) have been copied to {current_dir}")

from scheduling_tcd import TCDScheduler

path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)

dl_cn_model(cn_dir)
dl_cn_config(cn_dir)
dl_tagger_model(tagger_dir)
dl_lora_model(lora_dir)

# グローバル変数でpipeを管理
pipe = None
current_lora_model = None

def load_model(lora_model):
    global pipe, current_lora_model
    # 既にロードされたpipeがあり、同じLoRAモデルの場合は再利用
    if pipe is not None and current_lora_model == lora_model:
        return pipe  # キャッシュされたpipeを返す

    # 新しいpipeの生成
    dtype = torch.float16
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
    controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)

    pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
        "cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=dtype
    )
    pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
    
    pipe.enable_model_cpu_offload()

    # LoRAモデルの設定
    if lora_model == "とりにく風":
        pipe.load_lora_weights(lora_dir, weight_name="tcd-animaginexl-3_1.safetensors", adapter_name="tcd-animaginexl-3_1")
        pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors", adapter_name="tori29umai_line")        
        pipe.set_adapters(["tcd-animaginexl-3_1", "tori29umai_line"], adapter_weights=[1.0, 1.0])
    elif lora_model == "プレーン":
        pipe.load_lora_weights(lora_dir, weight_name="tcd-animaginexl-3_1.safetensors", adapter_name="tcd-animaginexl-3_1")    
        pipe.set_adapters(["tcd-animaginexl-3_1"], adapter_weights=[1.0])

    # 現在のLoRAモデルを保存
    current_lora_model = lora_model
    return pipe

@spaces.GPU(duration=120)
def predict(lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
    # pipeをグローバル変数から取得
    pipe = load_model(lora_model)
    
    # 画像読み込みとリサイズ
    input_image = Image.open(input_image_path)
    base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
    resize_image = resize_image_aspect_ratio(input_image)
    resize_base_image = resize_image_aspect_ratio(base_image)
    generator = torch.manual_seed(0)
    last_time = time.time()
    
    # プロンプト生成
    prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, " + prompt  
    
    execute_tags = ["realistic", "nose", "asian"]
    prompt = execute_prompt(execute_tags, prompt)
    prompt = remove_duplicates(prompt)        
    prompt = remove_color(prompt)
    print(prompt)

    # 画像生成
    output_image = pipe(
        image=resize_base_image,
        control_image=resize_image,
        strength=1.0,
        prompt=prompt,
        negative_prompt=negative_prompt,
        controlnet_conditioning_scale=float(controlnet_scale),
        generator=generator,
        num_inference_steps=4,
        guidance_scale=0,
        eta=0.3, 
    ).images[0]
    print(f"Time taken: {time.time() - last_time}")
    output_image = output_image.resize(input_image.size, Image.LANCZOS)
    return output_image

class Img2Img:
    def __init__(self):
        self.demo = self.layout()
        self.tagger_model = None
        self.input_image_path = None
        self.bg_removed_image = None

    def process_prompt_analysis(self, input_image_path):
        if self.tagger_model is None:
            self.tagger_model = modelLoad(tagger_dir)
        tags = analysis(input_image_path, tagger_dir, self.tagger_model)
        prompt = remove_color(tags)
        execute_tags = ["realistic", "nose", "asian"]
        prompt = execute_prompt(execute_tags, prompt)
        prompt = remove_duplicates(prompt)
        return prompt

    def layout(self):
        css = """
        #intro{
            max-width: 32rem;
            text-align: center;
            margin: 0 auto;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column():
                    # LoRAモデル選択ドロップダウン
                    self.lora_model = gr.Dropdown(label="Image Style",  choices=["とりにく風", "プレーン"], value="とりにく風")
                    self.input_image_path = gr.Image(label="Input image", type='filepath')
                    self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
                    
                    # 自動背景除去トリガー
                    self.input_image_path.change(
                        fn=self.auto_background_removal,
                        inputs=[self.input_image_path],
                        outputs=[self.bg_removed_image_path]
                    )

                    self.prompt = gr.Textbox(label="Prompt", lines=3)
                    self.negative_prompt = gr.Textbox(label="Negative prompt", lines=3, value="nose, asian, realistic, lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
                    prompt_analysis_button = gr.Button("Prompt analysis")
                    self.controlnet_scale = gr.Slider(minimum=0.4, maximum=1.0, value=0.55, step=0.01, label="Photo fidelity")                 
                    generate_button = gr.Button(value="Generate", variant="primary")

                with gr.Column():
                    self.output_image = gr.Image(type="pil", label="Output image")

            prompt_analysis_button.click(
                fn=self.process_prompt_analysis,
                inputs=[self.bg_removed_image_path],
                outputs=self.prompt
            )

            generate_button.click(
                fn=predict,
                inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
                outputs=self.output_image
            )
        return demo

    def auto_background_removal(self, input_image_path):
        if input_image_path is not None:
            bg_removed_image = background_removal(input_image_path)
            return bg_removed_image
        return None

img2img = Img2Img()
img2img.demo.queue()
img2img.demo.launch(share=True)