Spaces:
Runtime error
Runtime error
File size: 7,163 Bytes
ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 05469a1 ef6c3c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .attention import SelfAttention, CrossAttention
class TimeEmbedding(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd)
def forward(self, x):
x = F.silu(self.linear_1(x))
return self.linear_2(x)
class UNET_ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_time=1280):
super().__init__()
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.linear_time = nn.Linear(n_time, out_channels)
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.residual_layer = nn.Identity() if in_channels == out_channels else nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
def forward(self, feature, time):
residue = feature
feature = F.silu(self.groupnorm_feature(feature))
feature = self.conv_feature(feature)
time = self.linear_time(F.silu(time))
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
merged = F.silu(self.groupnorm_merged(merged))
merged = self.conv_merged(merged)
return merged + self.residual_layer(residue)
class UNET_AttentionBlock(nn.Module):
def __init__(self, n_head: int, n_embd: int, d_context=768):
super().__init__()
channels = n_head * n_embd
self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6)
self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
self.layernorm_1 = nn.LayerNorm(channels)
self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
self.layernorm_2 = nn.LayerNorm(channels)
self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
self.layernorm_3 = nn.LayerNorm(channels)
self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2)
self.linear_geglu_2 = nn.Linear(4 * channels, channels)
self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
def forward(self, x, context):
residue_long = x
x = self.conv_input(self.groupnorm(x))
n, c, h, w = x.shape
x = x.view((n, c, h * w)).transpose(-1, -2)
residue_short = x
x = self.attention_1(self.layernorm_1(x)) + residue_short
residue_short = x
x = self.attention_2(self.layernorm_2(x), context) + residue_short
residue_short = x
x, gate = self.linear_geglu_1(self.layernorm_3(x)).chunk(2, dim=-1)
x = self.linear_geglu_2(x * F.gelu(gate)) + residue_short
x = x.transpose(-1, -2).view((n, c, h, w))
return self.conv_output(x) + residue_long
class Upsample(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
return self.conv(F.interpolate(x, scale_factor=2, mode='nearest'))
class SwitchSequential(nn.Sequential):
def forward(self, x, context, time):
for layer in self:
if isinstance(layer, UNET_AttentionBlock):
x = layer(x, context)
elif isinstance(layer, UNET_ResidualBlock):
x = layer(x, time)
else:
x = layer(x)
return x
class UNET(nn.Module):
def __init__(self):
super().__init__()
self.encoders = nn.ModuleList([
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
])
self.bottleneck = SwitchSequential(
UNET_ResidualBlock(1280, 1280),
UNET_AttentionBlock(8, 160),
UNET_ResidualBlock(1280, 1280),
)
self.decoders = nn.ModuleList([
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
])
def forward(self, x, context, time):
skip_connections = []
for layers in self.encoders:
x = layers(x, context, time)
skip_connections.append(x)
x = self.bottleneck(x, context, time)
for layers in self.decoders:
x = torch.cat((x, skip_connections.pop()), dim=1)
x = layers(x, context, time)
return x
class UNET_OutputLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.groupnorm = nn.GroupNorm(32, in_channels)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
def forward(self, x):
x = F.silu(self.groupnorm(x))
return self.conv(x)
class Diffusion(nn.Module):
def __init__(self):
super().__init__()
self.time_embedding = TimeEmbedding(320)
self.unet = UNET()
self.final = UNET_OutputLayer(320, 4)
def forward(self, latent, context, time):
time = self.time_embedding(time)
output = self.unet(latent, context, time)
return self.final(output)
|