Diffusion / src /pipeline.py
torinriley's picture
Upload 25 files
b876688 verified
raw
history blame
5.22 kB
import torch
import numpy as np
from tqdm import tqdm
from ddpm import DDPMSampler
import logging
from config import Config, default_config
WIDTH = 512
HEIGHT = 512
LATENTS_WIDTH = WIDTH // 8
LATENTS_HEIGHT = HEIGHT // 8
logging.basicConfig(level=logging.INFO)
def generate(
prompt,
uncond_prompt=None,
input_image=None,
config: Config = default_config,
):
with torch.no_grad():
validate_strength(config.diffusion.strength)
generator = initialize_generator(config.seed, config.device.device)
context = encode_prompt(prompt, uncond_prompt, config.diffusion.do_cfg, config.tokenizer, config.models["clip"], config.device.device)
latents = initialize_latents(input_image, config.diffusion.strength, generator, config.models, config.device.device, config.diffusion.sampler_name, config.diffusion.n_inference_steps)
images = run_diffusion(latents, context, config.diffusion.do_cfg, config.diffusion.cfg_scale, config.models, config.device.device, config.diffusion.sampler_name, config.diffusion.n_inference_steps, generator)
return postprocess_images(images)
def validate_strength(strength):
if not 0 < strength <= 1:
raise ValueError("Strength must be between 0 and 1")
def initialize_generator(seed, device):
generator = torch.Generator(device=device)
if seed is None:
generator.seed()
else:
generator.manual_seed(seed)
return generator
def encode_prompt(prompt, uncond_prompt, do_cfg, tokenizer, clip, device):
clip.to(device)
if do_cfg:
cond_tokens = tokenizer.batch_encode_plus([prompt], padding="max_length", max_length=77).input_ids
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
cond_context = clip(cond_tokens)
uncond_tokens = tokenizer.batch_encode_plus([uncond_prompt], padding="max_length", max_length=77).input_ids
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
uncond_context = clip(uncond_tokens)
context = torch.cat([cond_context, uncond_context])
else:
tokens = tokenizer.batch_encode_plus([prompt], padding="max_length", max_length=77).input_ids
tokens = torch.tensor(tokens, dtype=torch.long, device=device)
context = clip(tokens)
return context
def initialize_latents(input_image, strength, generator, models, device, sampler_name, n_inference_steps):
if input_image is None:
# Initialize with random noise
latents = torch.randn((1, 4, 64, 64), generator=generator, device=device)
else:
# Initialize with encoded input image
latents = encode_image(input_image, models, device)
# Add noise based on strength
noise = torch.randn_like(latents, generator=generator)
latents = (1 - strength) * latents + strength * noise
return latents
def preprocess_image(input_image):
input_image_tensor = input_image.resize((WIDTH, HEIGHT))
input_image_tensor = np.array(input_image_tensor)
input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32)
input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1))
input_image_tensor = input_image_tensor.unsqueeze(0)
input_image_tensor = input_image_tensor.permute(0, 3, 1, 2)
return input_image_tensor
def get_sampler(sampler_name, generator, n_inference_steps):
if sampler_name == "ddpm":
sampler = DDPMSampler(generator)
sampler.set_inference_timesteps(n_inference_steps)
else:
raise ValueError(f"Unknown sampler value {sampler_name}.")
return sampler
def run_diffusion(latents, context, do_cfg, cfg_scale, models, device, sampler_name, n_inference_steps, generator):
diffusion = models["diffusion"]
diffusion.to(device)
sampler = get_sampler(sampler_name, generator, n_inference_steps)
timesteps = tqdm(sampler.timesteps)
for timestep in timesteps:
time_embedding = get_time_embedding(timestep).to(device)
model_input = latents.repeat(2, 1, 1, 1) if do_cfg else latents
model_output = diffusion(model_input, context, time_embedding)
if do_cfg:
output_cond, output_uncond = model_output.chunk(2)
model_output = cfg_scale * (output_cond - output_uncond) + output_uncond
latents = sampler.step(timestep, latents, model_output)
decoder = models["decoder"]
decoder.to(device)
images = decoder(latents)
return images
def postprocess_images(images):
images = rescale(images, (-1, 1), (0, 255), clamp=True)
images = images.permute(0, 2, 3, 1)
images = images.to("cpu", torch.uint8).numpy()
return images[0]
def rescale(x, old_range, new_range, clamp=False):
old_min, old_max = old_range
new_min, new_max = new_range
x -= old_min
x *= (new_max - new_min) / (old_max - old_min)
x += new_min
if clamp:
x = x.clamp(new_min, new_max)
return x
def get_time_embedding(timestep):
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160)
x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None]
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)