Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .decoder import VAE_AttentionBlock, VAE_ResidualBlock | |
class VAE_Encoder(nn.Sequential): | |
def __init__(self): | |
super().__init__( | |
nn.Conv2d(3, 128, kernel_size=3, padding=1), | |
VAE_ResidualBlock(128, 128), | |
VAE_ResidualBlock(128, 128), | |
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0), | |
VAE_ResidualBlock(128, 256), | |
VAE_ResidualBlock(256, 256), | |
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0), | |
VAE_ResidualBlock(256, 512), | |
VAE_ResidualBlock(512, 512), | |
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0), | |
VAE_ResidualBlock(512, 512), | |
VAE_ResidualBlock(512, 512), | |
VAE_ResidualBlock(512, 512), | |
VAE_AttentionBlock(512), | |
VAE_ResidualBlock(512, 512), | |
nn.GroupNorm(32, 512), | |
nn.SiLU(), | |
nn.Conv2d(512, 8, kernel_size=3, padding=1), | |
nn.Conv2d(8, 8, kernel_size=1, padding=0), | |
) | |
def forward(self, x, noise): | |
for module in self: | |
if getattr(module, 'stride', None) == (2, 2): | |
x = F.pad(x, (0, 1, 0, 1)) | |
x = module(x) | |
mean, log_variance = torch.chunk(x, 2, dim=1) | |
log_variance = torch.clamp(log_variance, -30, 20) | |
variance = log_variance.exp() | |
stdev = variance.sqrt() | |
x = mean + stdev * noise | |
x *= 0.18215 | |
return x | |