Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,70 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import nltk
|
5 |
from openai import OpenAI
|
6 |
-
from transformers import pipeline
|
7 |
from diffusers import StableDiffusionPipeline
|
8 |
from ultralytics import YOLO
|
9 |
from gtts import gTTS
|
10 |
from PIL import Image
|
11 |
-
import numpy as np
|
12 |
from nltk.tokenize import sent_tokenize
|
13 |
-
from IPython.display import Audio
|
14 |
import spaces
|
15 |
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
18 |
api_key = os.getenv("OPENAI_API_KEY")
|
19 |
if not api_key:
|
20 |
raise ValueError("⚠️ OpenAI API Key is missing! Add it as a Secret in Hugging Face Spaces.")
|
21 |
|
22 |
-
|
23 |
client = OpenAI(api_key=api_key)
|
24 |
|
25 |
-
|
26 |
yolo_model = YOLO("yolov8s.pt")
|
27 |
-
|
|
|
|
|
28 |
stable_diffusion.to(device)
|
|
|
|
|
29 |
nltk.download("punkt")
|
30 |
-
|
|
|
|
|
31 |
|
32 |
@spaces.GPU
|
|
|
33 |
def detect_objects(image_path):
|
34 |
results = yolo_model(image_path)
|
35 |
detected_objects = []
|
36 |
for r in results:
|
37 |
for box in r.boxes:
|
38 |
-
class_id = int(box.cls
|
39 |
label = yolo_model.names[class_id]
|
40 |
detected_objects.append(label)
|
41 |
return detected_objects
|
42 |
|
|
|
43 |
def generate_story(detected_objects):
|
44 |
story_prompt = f"Write a short story based on the following objects: {', '.join(detected_objects)}"
|
45 |
response = client.chat.completions.create(
|
46 |
-
model="gpt-
|
47 |
messages=[{"role": "user", "content": story_prompt}],
|
48 |
max_tokens=200
|
49 |
)
|
50 |
return response.choices[0].message.content.strip()
|
51 |
|
|
|
52 |
def summarize_story(story):
|
53 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
54 |
scenes = sent_tokenize(summary)
|
55 |
return scenes
|
56 |
|
|
|
57 |
def generate_images(story):
|
58 |
scenes = summarize_story(story)
|
59 |
prompts = [f"Highly detailed, cinematic scene: {scene}, digital art, 4K, realistic lighting" for scene in scenes]
|
@@ -63,24 +74,52 @@ def generate_images(story):
|
|
63 |
images.append(image)
|
64 |
return images
|
65 |
|
|
|
66 |
def text_to_speech(story):
|
67 |
tts = gTTS(text=story, lang="en", slow=False)
|
68 |
-
audio_file_path = "
|
69 |
tts.save(audio_file_path)
|
70 |
return audio_file_path
|
71 |
|
|
|
72 |
def full_pipeline(image):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
demo = gr.Interface(
|
85 |
fn=full_pipeline,
|
86 |
inputs=gr.Image(type="pil"),
|
@@ -94,6 +133,6 @@ demo = gr.Interface(
|
|
94 |
description="Upload an image, and the AI will detect objects, generate a story, create images, and narrate the story."
|
95 |
)
|
96 |
|
97 |
-
|
98 |
if __name__ == "__main__":
|
99 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import nltk
|
6 |
from openai import OpenAI
|
7 |
+
from transformers import pipeline
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
from ultralytics import YOLO
|
10 |
from gtts import gTTS
|
11 |
from PIL import Image
|
|
|
12 |
from nltk.tokenize import sent_tokenize
|
|
|
13 |
import spaces
|
14 |
|
15 |
+
# Set device (use GPU if available)
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
+
# Load environment variables
|
19 |
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
if not api_key:
|
21 |
raise ValueError("⚠️ OpenAI API Key is missing! Add it as a Secret in Hugging Face Spaces.")
|
22 |
|
23 |
+
# Initialize OpenAI client
|
24 |
client = OpenAI(api_key=api_key)
|
25 |
|
26 |
+
# Load YOLO model
|
27 |
yolo_model = YOLO("yolov8s.pt")
|
28 |
+
|
29 |
+
# Load Stable Diffusion pipeline
|
30 |
+
stable_diffusion = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
31 |
stable_diffusion.to(device)
|
32 |
+
|
33 |
+
# Download NLTK data
|
34 |
nltk.download("punkt")
|
35 |
+
|
36 |
+
# Load summarization pipeline
|
37 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == "cuda" else -1)
|
38 |
|
39 |
@spaces.GPU
|
40 |
+
# Function to detect objects in an image
|
41 |
def detect_objects(image_path):
|
42 |
results = yolo_model(image_path)
|
43 |
detected_objects = []
|
44 |
for r in results:
|
45 |
for box in r.boxes:
|
46 |
+
class_id = int(box.cls.item())
|
47 |
label = yolo_model.names[class_id]
|
48 |
detected_objects.append(label)
|
49 |
return detected_objects
|
50 |
|
51 |
+
# Function to generate a story based on detected objects
|
52 |
def generate_story(detected_objects):
|
53 |
story_prompt = f"Write a short story based on the following objects: {', '.join(detected_objects)}"
|
54 |
response = client.chat.completions.create(
|
55 |
+
model="gpt-4", # Use GPT-4 or GPT-3.5-turbo
|
56 |
messages=[{"role": "user", "content": story_prompt}],
|
57 |
max_tokens=200
|
58 |
)
|
59 |
return response.choices[0].message.content.strip()
|
60 |
|
61 |
+
# Function to summarize the story into scenes
|
62 |
def summarize_story(story):
|
63 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
64 |
scenes = sent_tokenize(summary)
|
65 |
return scenes
|
66 |
|
67 |
+
# Function to generate images for each scene
|
68 |
def generate_images(story):
|
69 |
scenes = summarize_story(story)
|
70 |
prompts = [f"Highly detailed, cinematic scene: {scene}, digital art, 4K, realistic lighting" for scene in scenes]
|
|
|
74 |
images.append(image)
|
75 |
return images
|
76 |
|
77 |
+
# Function to convert text to speech
|
78 |
def text_to_speech(story):
|
79 |
tts = gTTS(text=story, lang="en", slow=False)
|
80 |
+
audio_file_path = f"story_audio_{uuid.uuid4().hex}.mp3" # Unique filename
|
81 |
tts.save(audio_file_path)
|
82 |
return audio_file_path
|
83 |
|
84 |
+
# Main pipeline function
|
85 |
def full_pipeline(image):
|
86 |
+
try:
|
87 |
+
# Save the image with a unique filename
|
88 |
+
image_path = f"temp_{uuid.uuid4().hex}.jpg"
|
89 |
+
image.save(image_path)
|
90 |
+
|
91 |
+
# Detect objects in the image
|
92 |
+
detected_objects = detect_objects(image_path)
|
93 |
+
if not detected_objects:
|
94 |
+
return "No objects detected. Please upload a different image.", "", [], None
|
95 |
+
|
96 |
+
# Generate a story based on detected objects
|
97 |
+
story = generate_story(detected_objects)
|
98 |
+
if not story:
|
99 |
+
return "Failed to generate a story. Please try again.", "", [], None
|
100 |
+
|
101 |
+
# Summarize the story into scenes
|
102 |
+
scenes = summarize_story(story)
|
103 |
+
if not scenes:
|
104 |
+
return story, "No scenes extracted.", [], None
|
105 |
+
|
106 |
+
# Generate images for each scene
|
107 |
+
images = generate_images(story)
|
108 |
+
if not images:
|
109 |
+
return story, "\n".join(scenes), [], None
|
110 |
+
|
111 |
+
# Convert the story to audio
|
112 |
+
audio = text_to_speech(story)
|
113 |
+
if not audio:
|
114 |
+
return story, "\n".join(scenes), images, None
|
115 |
+
|
116 |
+
# Return all outputs
|
117 |
+
return story, "\n".join(scenes), images, audio
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
return f"An error occurred: {str(e)}", "", [], None
|
121 |
+
|
122 |
+
# Gradio UI
|
123 |
demo = gr.Interface(
|
124 |
fn=full_pipeline,
|
125 |
inputs=gr.Image(type="pil"),
|
|
|
133 |
description="Upload an image, and the AI will detect objects, generate a story, create images, and narrate the story."
|
134 |
)
|
135 |
|
136 |
+
# Launch the app
|
137 |
if __name__ == "__main__":
|
138 |
demo.launch()
|