File size: 4,291 Bytes
5ddcfe5 1fb6cc9 5ddcfe5 1fb6cc9 5ddcfe5 352cf53 5ddcfe5 1fb6cc9 5ddcfe5 352cf53 d96c047 1fb6cc9 5ddcfe5 352cf53 d96c047 1fb6cc9 5ddcfe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import asyncio
import json
import logging
import os
import pickle
import chromadb
import logfire
from custom_retriever import CustomRetriever
from dotenv import load_dotenv
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.cohere import CohereEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from utils import init_mongo_db
load_dotenv()
logfire.configure()
if not os.path.exists("data/chroma-db-all_sources"):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co/datasets/towardsai-buster/ai-tutor-vector-db/tree/main
logfire.warn(
f"Vector database does not exist at 'data/chroma-db-all_sources', downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-tutors/ai-tutor-vector-db",
local_dir="data",
repo_type="dataset",
)
logfire.info(f"Downloaded vector database to 'data/chroma-db-all_sources'")
def create_docs(input_file: str) -> list[Document]:
with open(input_file, "r") as f:
documents = []
for line in f:
data = json.loads(line)
documents.append(
Document(
doc_id=data["doc_id"],
text=data["content"],
metadata={ # type: ignore
"url": data["url"],
"title": data["name"],
"tokens": data["tokens"],
"retrieve_doc": data["retrieve_doc"],
"source": data["source"],
},
excluded_llm_metadata_keys=[
"title",
"tokens",
"retrieve_doc",
"source",
],
excluded_embed_metadata_keys=[
"url",
"tokens",
"retrieve_doc",
"source",
],
)
)
return documents
def setup_database(db_collection, dict_file_name) -> CustomRetriever:
db = chromadb.PersistentClient(path=f"data/{db_collection}")
chroma_collection = db.get_or_create_collection(db_collection)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
embed_model = CohereEmbedding(
api_key=os.environ["COHERE_API_KEY"],
model_name="embed-english-v3.0",
input_type="search_query",
)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)],
show_progress=True,
# use_async=True,
)
vector_retriever = VectorIndexRetriever(
index=index,
similarity_top_k=15,
embed_model=embed_model,
# use_async=True,
)
with open(f"data/{db_collection}/{dict_file_name}", "rb") as f:
document_dict = pickle.load(f)
return CustomRetriever(vector_retriever, document_dict)
custom_retriever_all_sources: CustomRetriever = setup_database(
"chroma-db-all_sources",
"document_dict_all_sources.pkl",
)
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
AVAILABLE_SOURCES_UI = [
"Transformers Docs",
"PEFT Docs",
"TRL Docs",
"LlamaIndex Docs",
"LangChain Docs",
"OpenAI Cookbooks",
"Towards AI Blog",
"8 Hour Primer",
"Advanced LLM Developer",
"Python Primer",
]
AVAILABLE_SOURCES = [
"transformers",
"peft",
"trl",
"llama_index",
"langchain",
"openai_cookbooks",
"tai_blog",
"8-hour_primer",
"llm_developer",
"python_primer",
]
mongo_db = (
init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
if MONGODB_URI
else logfire.warn("No mongodb uri found, you will not be able to save data.")
)
__all__ = [
"custom_retriever_all_sources",
"mongo_db",
"CONCURRENCY_COUNT",
"AVAILABLE_SOURCES_UI",
"AVAILABLE_SOURCES",
]
|