File size: 7,793 Bytes
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb6cc9
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
352cf53
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352cf53
d96c047
1fb6cc9
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352cf53
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8910a
 
 
 
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd70582
5ddcfe5
 
 
 
 
 
 
 
 
 
 
bd70582
 
5ddcfe5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import pdb

import gradio as gr
import logfire
from custom_retriever import CustomRetriever
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.llms import MessageRole
from llama_index.core.memory import ChatSummaryMemoryBuffer
from llama_index.core.tools import RetrieverTool, ToolMetadata
from llama_index.core.vector_stores import (
    FilterCondition,
    FilterOperator,
    MetadataFilter,
    MetadataFilters,
)
from llama_index.llms.openai import OpenAI
from prompts import system_message_openai_agent
from setup import (
    AVAILABLE_SOURCES,
    AVAILABLE_SOURCES_UI,
    CONCURRENCY_COUNT,
    custom_retriever_all_sources,
)


def update_query_engine_tools(selected_sources) -> list[RetrieverTool]:
    tools = []
    source_mapping: dict[str, tuple[CustomRetriever, str, str]] = {
        "All Sources": (
            custom_retriever_all_sources,
            "all_sources_info",
            """Useful tool that contains general information about the field of AI.""",
        ),
    }

    for source in selected_sources:
        if source in source_mapping:
            custom_retriever, name, description = source_mapping[source]
            tools.append(
                RetrieverTool(
                    retriever=custom_retriever,
                    metadata=ToolMetadata(
                        name=name,
                        description=description,
                    ),
                )
            )

    return tools


def generate_completion(
    query,
    history,
    sources,
    model,
    memory,
):
    llm = OpenAI(temperature=1, model=model, max_tokens=None)
    client = llm._get_client()
    logfire.instrument_openai(client)

    with logfire.span(f"Running query: {query}"):
        logfire.info(f"User chosen sources: {sources}")

        memory_chat_list = memory.get()

        if len(memory_chat_list) != 0:
            user_index_memory = [
                i
                for i, msg in enumerate(memory_chat_list)
                if msg.role == MessageRole.USER
            ]

            user_index_history = [
                i for i, msg in enumerate(history) if msg["role"] == "user"
            ]

            if len(user_index_memory) > len(user_index_history):
                logfire.warn(f"There are more user messages in memory than in history")
                user_index_to_remove = user_index_memory[len(user_index_history)]
                memory_chat_list = memory_chat_list[:user_index_to_remove]
                memory.set(memory_chat_list)

        logfire.info(f"chat_history: {len(memory.get())} {memory.get()}")
        logfire.info(f"gradio_history: {len(history)} {history}")

        query_engine_tools: list[RetrieverTool] = update_query_engine_tools(
            ["All Sources"]
        )

        filter_list = []
        source_mapping = {
            "Transformers Docs": "transformers",
            "PEFT Docs": "peft",
            "TRL Docs": "trl",
            "LlamaIndex Docs": "llama_index",
            "LangChain Docs": "langchain",
            "OpenAI Cookbooks": "openai_cookbooks",
            "Towards AI Blog": "tai_blog",
            "8 Hour Primer": "8-hour_primer",
            "Advanced LLM Developer": "llm_developer",
            "Python Primer": "python_primer",
        }

        for source in sources:
            if source in source_mapping:
                filter_list.append(
                    MetadataFilter(
                        key="source",
                        operator=FilterOperator.EQ,
                        value=source_mapping[source],
                    )
                )

        filters = MetadataFilters(
            filters=filter_list,
            condition=FilterCondition.OR,
        )
        logfire.info(f"Filters: {filters}")
        query_engine_tools[0].retriever._vector_retriever._filters = filters

        # pdb.set_trace()

        agent = OpenAIAgent.from_tools(
            llm=llm,
            memory=memory,
            tools=query_engine_tools,
            system_prompt=system_message_openai_agent,
        )

        completion = agent.stream_chat(query)

    answer_str = ""
    for token in completion.response_gen:
        answer_str += token
        yield answer_str

    for answer_str in add_sources(answer_str, completion):
        yield answer_str


def add_sources(answer_str, completion):
    if completion is None:
        yield answer_str

    formatted_sources = format_sources(completion)
    if formatted_sources == "":
        yield answer_str

    if formatted_sources != "":
        answer_str += "\n\n" + formatted_sources

    yield answer_str


def format_sources(completion) -> str:
    if len(completion.sources) == 0:
        return ""

    # logfire.info(f"Formatting sources: {completion.sources}")

    display_source_to_ui = {
        src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
    }

    documents_answer_template: str = (
        "πŸ“ Here are the sources I used to answer your question:\n{documents}"
    )
    document_template: str = "[πŸ”— {source}: {title}]({url}), relevance: {score:2.2f}"
    all_documents = []
    for source in completion.sources:  # looping over list[ToolOutput]
        if isinstance(source.raw_output, Exception):
            logfire.error(f"Error in source output: {source.raw_output}")
            # pdb.set_trace()
            continue

        if not isinstance(source.raw_output, list):
            logfire.warn(f"Unexpected source output type: {type(source.raw_output)}")
            continue
        for src in source.raw_output:  # looping over list[NodeWithScore]
            document = document_template.format(
                title=src.metadata["title"],
                score=src.score,
                source=display_source_to_ui.get(
                    src.metadata["source"], src.metadata["source"]
                ),
                url=src.metadata["url"],
            )
            all_documents.append(document)

    if len(all_documents) == 0:
        return ""
    else:
        documents = "\n".join(all_documents)
        return documents_answer_template.format(documents=documents)


def save_completion(completion, history):
    pass


def vote(data: gr.LikeData):
    pass


accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
sources = gr.CheckboxGroup(
    AVAILABLE_SOURCES_UI,
    label="Sources",
    value=[
        "Advanced LLM Developer",
        "8 Hour Primer",
        "Python Primer",
        "Towards AI Blog",
        "Transformers Docs",
        "PEFT Docs",
        "TRL Docs",
        "LlamaIndex Docs",
        "LangChain Docs",
        "OpenAI Cookbooks",
    ],
    interactive=True,
)
model = gr.Dropdown(
    [
        "gpt-4o-mini",
    ],
    label="Model",
    value="gpt-4o-mini",
    interactive=False,
)

with gr.Blocks(
    title="Towards AI πŸ€–",
    analytics_enabled=True,
    fill_height=True,
) as demo:

    memory = gr.State(
        lambda: ChatSummaryMemoryBuffer.from_defaults(
            token_limit=120000,
        )
    )
    chatbot = gr.Chatbot(
        type="messages",
        scale=20,
        placeholder="<strong>Towards AI πŸ€–: A Question-Answering Bot for anything AI-related</strong><br>",
        show_label=False,
        show_copy_button=True,
    )
    chatbot.like(vote, None, None)
    gr.ChatInterface(
        fn=generate_completion,
        type="messages",
        chatbot=chatbot,
        additional_inputs=[sources, model, memory],
        additional_inputs_accordion=accordion,
        # fill_height=True,
        # fill_width=True,
        analytics_enabled=True,
    )

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
    demo.launch(debug=False, share=False)