ai-tutor-chatbot / data /scraping_scripts /update_docs_workflow.py
omarsol's picture
add update docs workflow
4ecfe75
#!/usr/bin/env python
"""
AI Tutor App - Documentation Update Workflow
This script automates the process of updating documentation from GitHub repositories:
1. Download documentation from GitHub using the API
2. Process markdown files to create JSONL data
3. Add contextual information to document nodes
4. Create vector stores
5. Upload databases to HuggingFace
This workflow is specific to updating library documentation (Transformers, PEFT, LlamaIndex, etc.).
For adding courses, use the add_course_workflow.py script instead.
Usage:
python update_docs_workflow.py --sources [SOURCE1] [SOURCE2] ...
Additional flags to run specific steps (if you want to restart from a specific point):
--skip-download Skip the GitHub download step
--skip-process Skip the markdown processing step
--new-context-only Only process new content when adding context
--skip-context Skip the context addition step entirely
--skip-vectors Skip vector store creation
--skip-upload Skip uploading to HuggingFace
"""
import argparse
import json
import logging
import os
import pickle
import subprocess
import sys
from typing import Dict, List, Set
from dotenv import load_dotenv
from huggingface_hub import HfApi, hf_hub_download
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def ensure_required_files_exist():
"""Download required data files from HuggingFace if they don't exist locally."""
# List of files to check and download
required_files = {
# Critical files
"data/all_sources_data.jsonl": "all_sources_data.jsonl",
"data/all_sources_contextual_nodes.pkl": "all_sources_contextual_nodes.pkl",
# Documentation source files
"data/transformers_data.jsonl": "transformers_data.jsonl",
"data/peft_data.jsonl": "peft_data.jsonl",
"data/trl_data.jsonl": "trl_data.jsonl",
"data/llama_index_data.jsonl": "llama_index_data.jsonl",
"data/langchain_data.jsonl": "langchain_data.jsonl",
"data/openai_cookbooks_data.jsonl": "openai_cookbooks_data.jsonl",
# Course files
"data/tai_blog_data.jsonl": "tai_blog_data.jsonl",
"data/8-hour_primer_data.jsonl": "8-hour_primer_data.jsonl",
"data/llm_developer_data.jsonl": "llm_developer_data.jsonl",
"data/python_primer_data.jsonl": "python_primer_data.jsonl",
}
# Critical files that must be downloaded
critical_files = [
"data/all_sources_data.jsonl",
"data/all_sources_contextual_nodes.pkl",
]
# Check and download each file
for local_path, remote_filename in required_files.items():
if not os.path.exists(local_path):
logger.info(
f"{remote_filename} not found. Attempting to download from HuggingFace..."
)
try:
hf_hub_download(
token=os.getenv("HF_TOKEN"),
repo_id="towardsai-tutors/ai-tutor-data",
filename=remote_filename,
repo_type="dataset",
local_dir="data",
)
logger.info(
f"Successfully downloaded {remote_filename} from HuggingFace"
)
except Exception as e:
logger.warning(f"Could not download {remote_filename}: {e}")
# Only create empty file for all_sources_data.jsonl if it's missing
if local_path == "data/all_sources_data.jsonl":
logger.warning(
"Creating a new all_sources_data.jsonl file. This will not include previously existing data."
)
with open(local_path, "w") as f:
pass
# If critical file is missing, print a more serious warning
if local_path in critical_files:
logger.warning(
f"Critical file {remote_filename} is missing. The workflow may not function correctly."
)
if local_path == "data/all_sources_contextual_nodes.pkl":
logger.warning(
"The context addition step will process all documents since no existing contexts were found."
)
# Documentation sources that can be updated via GitHub API
GITHUB_SOURCES = [
"transformers",
"peft",
"trl",
"llama_index",
"openai_cookbooks",
"langchain",
]
def load_jsonl(file_path: str) -> List[Dict]:
"""Load data from a JSONL file."""
data = []
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
data.append(json.loads(line))
return data
def save_jsonl(data: List[Dict], file_path: str) -> None:
"""Save data to a JSONL file."""
with open(file_path, "w", encoding="utf-8") as f:
for item in data:
json.dump(item, f, ensure_ascii=False)
f.write("\n")
def download_from_github(sources: List[str]) -> None:
"""Download documentation from GitHub repositories."""
logger.info(f"Downloading documentation from GitHub for sources: {sources}")
for source in sources:
if source not in GITHUB_SOURCES:
logger.warning(f"Source {source} is not a GitHub source, skipping download")
continue
logger.info(f"Downloading {source} documentation")
cmd = ["python", "data/scraping_scripts/github_to_markdown_ai_docs.py", source]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(
f"Error downloading {source} documentation - check output above"
)
# Continue with other sources instead of exiting
continue
logger.info(f"Successfully downloaded {source} documentation")
def process_markdown_files(sources: List[str]) -> None:
"""Process markdown files for specific sources."""
logger.info(f"Processing markdown files for sources: {sources}")
cmd = ["python", "data/scraping_scripts/process_md_files.py"] + sources
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error processing markdown files - check output above")
sys.exit(1)
logger.info(f"Successfully processed markdown files")
def get_processed_doc_ids() -> Set[str]:
"""Get set of doc_ids that have already been processed with context."""
if not os.path.exists("data/all_sources_contextual_nodes.pkl"):
return set()
try:
with open("data/all_sources_contextual_nodes.pkl", "rb") as f:
nodes = pickle.load(f)
return {node.source_node.node_id for node in nodes}
except Exception as e:
logger.error(f"Error loading processed doc_ids: {e}")
return set()
def add_context_to_nodes(new_only: bool = False) -> None:
"""Add context to document nodes, optionally processing only new content."""
logger.info("Adding context to document nodes")
if new_only:
# Load all documents
all_docs = load_jsonl("data/all_sources_data.jsonl")
processed_ids = get_processed_doc_ids()
# Filter for unprocessed documents
new_docs = [doc for doc in all_docs if doc["doc_id"] not in processed_ids]
if not new_docs:
logger.info("No new documents to process")
return
# Save temporary JSONL with only new documents
temp_file = "data/new_docs_temp.jsonl"
save_jsonl(new_docs, temp_file)
# Temporarily modify the add_context_to_nodes.py script to use the temp file
cmd = [
"python",
"-c",
f"""
import asyncio
import os
import pickle
import json
from data.scraping_scripts.add_context_to_nodes import create_docs, process
async def main():
# First, get the list of sources being updated from the temp file
updated_sources = set()
with open("{temp_file}", "r") as f:
for line in f:
data = json.loads(line)
updated_sources.add(data["source"])
print(f"Updating nodes for sources: {{updated_sources}}")
# Process new documents
documents = create_docs("{temp_file}")
enhanced_nodes = await process(documents)
print(f"Generated context for {{len(enhanced_nodes)}} new nodes")
# Load existing nodes if they exist
existing_nodes = []
if os.path.exists("data/all_sources_contextual_nodes.pkl"):
with open("data/all_sources_contextual_nodes.pkl", "rb") as f:
existing_nodes = pickle.load(f)
# Filter out existing nodes for sources we're updating
filtered_nodes = []
removed_count = 0
for node in existing_nodes:
# Try to extract source from node metadata
try:
source = None
if hasattr(node, 'source_node') and hasattr(node.source_node, 'metadata'):
source = node.source_node.metadata.get("source")
elif hasattr(node, 'metadata'):
source = node.metadata.get("source")
if source not in updated_sources:
filtered_nodes.append(node)
else:
removed_count += 1
except Exception:
# Keep nodes where we can't determine the source
filtered_nodes.append(node)
print(f"Removed {{removed_count}} existing nodes for updated sources")
existing_nodes = filtered_nodes
# Combine filtered existing nodes with new nodes
all_nodes = existing_nodes + enhanced_nodes
# Save all nodes
with open("data/all_sources_contextual_nodes.pkl", "wb") as f:
pickle.dump(all_nodes, f)
print(f"Total nodes in updated file: {{len(all_nodes)}}")
asyncio.run(main())
""",
]
else:
# Process all documents
logger.info("Adding context to all nodes")
cmd = ["python", "data/scraping_scripts/add_context_to_nodes.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error adding context to nodes - check output above")
sys.exit(1)
logger.info("Successfully added context to nodes")
# Clean up temp file if it exists
if new_only and os.path.exists("data/new_docs_temp.jsonl"):
os.remove("data/new_docs_temp.jsonl")
def create_vector_stores() -> None:
"""Create vector stores from processed documents."""
logger.info("Creating vector stores")
cmd = ["python", "data/scraping_scripts/create_vector_stores.py", "all_sources"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error creating vector stores - check output above")
sys.exit(1)
logger.info("Successfully created vector stores")
def upload_to_huggingface(upload_jsonl: bool = False) -> None:
"""Upload databases to HuggingFace."""
logger.info("Uploading databases to HuggingFace")
cmd = ["python", "data/scraping_scripts/upload_dbs_to_hf.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error uploading databases - check output above")
sys.exit(1)
logger.info("Successfully uploaded databases to HuggingFace")
if upload_jsonl:
logger.info("Uploading data files to HuggingFace")
try:
# Note: This uses a separate private repository
cmd = ["python", "data/scraping_scripts/upload_data_to_hf.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error uploading data files - check output above")
sys.exit(1)
logger.info("Successfully uploaded data files to HuggingFace")
except Exception as e:
logger.error(f"Error uploading JSONL file: {e}")
sys.exit(1)
def main():
parser = argparse.ArgumentParser(
description="AI Tutor App Documentation Update Workflow"
)
parser.add_argument(
"--sources",
nargs="+",
choices=GITHUB_SOURCES,
default=GITHUB_SOURCES,
help="GitHub documentation sources to update",
)
parser.add_argument(
"--skip-download", action="store_true", help="Skip downloading from GitHub"
)
parser.add_argument(
"--skip-process", action="store_true", help="Skip processing markdown files"
)
parser.add_argument(
"--process-all-context",
action="store_true",
help="Process all content when adding context (default: only process new content)",
)
parser.add_argument(
"--skip-context",
action="store_true",
help="Skip the context addition step entirely",
)
parser.add_argument(
"--skip-vectors", action="store_true", help="Skip vector store creation"
)
parser.add_argument(
"--skip-upload", action="store_true", help="Skip uploading to HuggingFace"
)
parser.add_argument(
"--skip-data-upload",
action="store_true",
help="Skip uploading data files (.jsonl and .pkl) to private HuggingFace repo (they are uploaded by default)",
)
args = parser.parse_args()
# Ensure required data files exist before proceeding
ensure_required_files_exist()
# Execute the workflow steps
if not args.skip_download:
download_from_github(args.sources)
if not args.skip_process:
process_markdown_files(args.sources)
if not args.skip_context:
add_context_to_nodes(not args.process_all_context)
if not args.skip_vectors:
create_vector_stores()
if not args.skip_upload:
# By default, also upload the data files (JSONL and PKL) unless explicitly skipped
upload_to_huggingface(not args.skip_data_upload)
logger.info("Documentation update workflow completed successfully")
if __name__ == "__main__":
main()