Spaces:
Running
Running
File size: 4,663 Bytes
7fb4bde 0b9f9a6 7fb4bde a030735 0f06abd 7fb4bde 0b9f9a6 7fb4bde 0b9f9a6 7fb4bde 0b9f9a6 7fb4bde 0f06abd 7fb4bde 0b9f9a6 0f06abd 0b9f9a6 7fb4bde 0b9f9a6 7fb4bde 0b9f9a6 0f06abd 0b9f9a6 0f06abd 0b9f9a6 0f06abd 0b9f9a6 0f06abd a5371c1 0f06abd a5371c1 0f06abd a5371c1 0f06abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import json
import os
import time
import numpy as np
import pandas as pd
from buster.documents_manager import DeepLakeDocumentsManager
DEEPLAKE_DATASET = os.getenv("DEEPLAKE_DATASET", "ai-tutor-dataset-2")
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")
df1 = pd.read_csv("data/advanced_rag_course.csv")
df2 = pd.read_csv("data/hf_transformers.csv")
df3 = pd.read_csv("data/langchain_course.csv")
df4 = pd.read_csv("data/filtered_tai_v2.csv")
df5 = pd.read_csv("data/wiki.csv") # , encoding="ISO-8859-1")
# df6 = pd.read_csv("data/openai.csv") # Broken
df7 = pd.read_csv("data/activeloop.csv")
df8 = pd.read_csv("data/llm_course.csv")
df9 = pd.read_csv("data/langchain_docs.csv") # , encoding="ISO-8859-1")
print(len(df1), df1.columns)
print(len(df2), df2.columns)
print(len(df3), df3.columns)
print(len(df4), df4.columns)
print(len(df5), df5.columns)
# print(len(df6), df6.columns)
print(len(df7), df7.columns)
print(len(df8), df8.columns)
print(len(df9), df9.columns)
# dataset_path = f"hub://{DEEPLAKE_ORG}/{DEEPLAKE_DATASET}"
dataset_path = f"local_dataset"
# dataset_path = f"{DEEPLAKE_DATASET}"
dm = DeepLakeDocumentsManager(
vector_store_path=dataset_path,
overwrite=False,
required_columns=["url", "content", "source", "title"],
)
dm.batch_add(
df=df1,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df2,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df3,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df4,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df5,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
# ERROR DO NOT ADD
# dm.batch_add(
# df=df6,
# batch_size=3000,
# min_time_interval=5,
# num_workers=15,
# csv_overwrite=False,
# )
dm.batch_add(
df=df7,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df8,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
dm.batch_add(
df=df9,
batch_size=3000,
min_time_interval=5,
num_workers=15,
csv_overwrite=False,
)
# dm.batch_add(
# df=df2,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_errors_filename="tmp.csv",
# csv_overwrite=False,
# )
# dm.batch_add(
# df=df3,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_errors_filename="tmp.csv",
# csv_overwrite=False,
# )
# dm.batch_add(
# df=df4,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_errors_filename="tmp.csv",
# csv_overwrite=False,
# )
# dm.batch_add(
# df=df5,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_errors_filename="tmp.csv",
# csv_overwrite=False,
# )
# dm.batch_add(
# df=df6,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_overwrite=False,
# csv_errors_filename="tmp.csv",
# )
# dm.batch_add(
# df=df7,
# batch_size=3000,
# min_time_interval=60,
# num_workers=32,
# csv_embeddings_filename="embeddings.csv",
# csv_errors_filename="tmp.csv",
# csv_overwrite=False,
# )
# client = OpenAI()
# openai_embeddings = OpenAIEmbeddings()
# def get_embedding(text, model="text-embedding-ada-002"):
# # Call to OpenAI's API to create the embedding
# response = client.embeddings.create(input=[text], model=model)
# # Extract the embedding data from the response
# embedding = response.data[0].embedding
# # Convert the ndarray to a list
# if isinstance(embedding, np.ndarray):
# embedding = embedding.tolist()
# return embedding
# vs = VectorStore(
# dataset_path,
# runtime='compute_engine',
# token=os.environ['ACTIVELOOP_TOKEN']
# )
# data = vs.search(query = "select * where shape(embedding)[0] == 0")
# vs.update_embedding(embedding_source_tensor = "text",
# query = "select * where shape(embedding)[0] == 0",
# exec_option = "compute_engine",
# embedding_function=get_embedding)
# data2 = vs.search(query = "select * where shape(embedding)[0] == 0")
|