File size: 4,663 Bytes
7fb4bde
0b9f9a6
7fb4bde
a030735
0f06abd
7fb4bde
 
0b9f9a6
7fb4bde
0b9f9a6
 
7fb4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9f9a6
 
7fb4bde
 
0f06abd
7fb4bde
0b9f9a6
 
 
0f06abd
0b9f9a6
 
 
7fb4bde
0b9f9a6
 
 
7fb4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9f9a6
 
 
0f06abd
 
 
 
 
 
 
 
 
0b9f9a6
0f06abd
 
 
 
 
 
 
 
 
0b9f9a6
0f06abd
 
 
 
 
 
 
 
 
0b9f9a6
0f06abd
 
 
 
 
 
 
 
 
a5371c1
0f06abd
 
 
 
 
 
 
 
 
a5371c1
0f06abd
 
 
 
 
 
 
 
 
a5371c1
0f06abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import json
import os
import time

import numpy as np
import pandas as pd
from buster.documents_manager import DeepLakeDocumentsManager

DEEPLAKE_DATASET = os.getenv("DEEPLAKE_DATASET", "ai-tutor-dataset-2")
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")

df1 = pd.read_csv("data/advanced_rag_course.csv")
df2 = pd.read_csv("data/hf_transformers.csv")
df3 = pd.read_csv("data/langchain_course.csv")
df4 = pd.read_csv("data/filtered_tai_v2.csv")
df5 = pd.read_csv("data/wiki.csv")  # , encoding="ISO-8859-1")
# df6 = pd.read_csv("data/openai.csv")  # Broken
df7 = pd.read_csv("data/activeloop.csv")
df8 = pd.read_csv("data/llm_course.csv")
df9 = pd.read_csv("data/langchain_docs.csv")  # , encoding="ISO-8859-1")

print(len(df1), df1.columns)
print(len(df2), df2.columns)
print(len(df3), df3.columns)
print(len(df4), df4.columns)
print(len(df5), df5.columns)
# print(len(df6), df6.columns)
print(len(df7), df7.columns)
print(len(df8), df8.columns)
print(len(df9), df9.columns)


# dataset_path = f"hub://{DEEPLAKE_ORG}/{DEEPLAKE_DATASET}"
dataset_path = f"local_dataset"
# dataset_path = f"{DEEPLAKE_DATASET}"


dm = DeepLakeDocumentsManager(
    vector_store_path=dataset_path,
    overwrite=False,
    required_columns=["url", "content", "source", "title"],
)


dm.batch_add(
    df=df1,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df2,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df3,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df4,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df5,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)

# ERROR DO NOT ADD
# dm.batch_add(
#     df=df6,
#     batch_size=3000,
#     min_time_interval=5,
#     num_workers=15,
#     csv_overwrite=False,
# )

dm.batch_add(
    df=df7,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df8,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)
dm.batch_add(
    df=df9,
    batch_size=3000,
    min_time_interval=5,
    num_workers=15,
    csv_overwrite=False,
)

# dm.batch_add(
#     df=df2,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_errors_filename="tmp.csv",
#     csv_overwrite=False,
# )

# dm.batch_add(
#     df=df3,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_errors_filename="tmp.csv",
#     csv_overwrite=False,
# )

# dm.batch_add(
#     df=df4,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_errors_filename="tmp.csv",
#     csv_overwrite=False,
# )

# dm.batch_add(
#     df=df5,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_errors_filename="tmp.csv",
#     csv_overwrite=False,
# )

# dm.batch_add(
#     df=df6,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_overwrite=False,
#     csv_errors_filename="tmp.csv",
# )

# dm.batch_add(
#     df=df7,
#     batch_size=3000,
#     min_time_interval=60,
#     num_workers=32,
#     csv_embeddings_filename="embeddings.csv",
#     csv_errors_filename="tmp.csv",
#     csv_overwrite=False,
# )


# client = OpenAI()

# openai_embeddings = OpenAIEmbeddings()
# def get_embedding(text, model="text-embedding-ada-002"):
#     # Call to OpenAI's API to create the embedding
#     response = client.embeddings.create(input=[text], model=model)

#     # Extract the embedding data from the response
#     embedding = response.data[0].embedding

#     # Convert the ndarray to a list
#     if isinstance(embedding, np.ndarray):
#         embedding = embedding.tolist()

#     return embedding


# vs = VectorStore(
#     dataset_path,
#     runtime='compute_engine',
#     token=os.environ['ACTIVELOOP_TOKEN']
# )

# data = vs.search(query = "select * where shape(embedding)[0] == 0")

# vs.update_embedding(embedding_source_tensor = "text",
#           query = "select * where shape(embedding)[0] == 0",
#           exec_option = "compute_engine",
#           embedding_function=get_embedding)

# data2 = vs.search(query = "select * where shape(embedding)[0] == 0")