Spaces:
Sleeping
Sleeping
File size: 5,318 Bytes
b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 b25ab31 bfabfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import numpy as np
import torch
from huggingface_hub import list_models, ModelFilter
from diffusers import DiffusionPipeline
# Проверка доступности модели на Hugging Face Hub
def is_model_available(model_id):
try:
models = list_models(filter=ModelFilter(model_name=model_id))
return len(models) > 0
except Exception:
return False
def validate_model(model_id):
if not model_id:
raise ValueError("Необходимо указать модель")
if not is_model_available(model_id):
raise ValueError(f"Модель '{model_id}' не найдена на Hugging Face Hub")
# Дополнительные проверки модели (можно настроить)
if not ("stable-diffusion" in model_id.lower() or "sdxl" in model_id.lower()):
raise ValueError("Поддерживаются только Stable Diffusion и SDXL модели")
# Инициализация устройства
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Глобальные переменные
current_model = None
pipe = None
def load_pipeline(model_id):
global pipe, current_model
if model_id != current_model:
validate_model(model_id)
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
current_model = model_id
return pipe
def infer(
model_id,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
try:
# Загрузка и проверка модели
pipeline = load_pipeline(model_id)
# Генерация изображения
generator = torch.Generator(device=device).manual_seed(seed)
result = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return result, seed
except Exception as e:
raise gr.Error(f"Ошибка генерации: {str(e)}")
# Список доступных моделей по умолчанию
available_models = [
"stabilityai/stable-diffusion-2-1",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"prompthero/openjourney-v4"
]
examples = [
["stabilityai/sdxl-turbo", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
["runwayml/stable-diffusion-v1-5", "An astronaut riding a green horse"],
["prompthero/openjourney-v4", "A cyberpunk cityscape at night, neon lights, rain"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎨 Text-to-Image Generator")
with gr.Row():
model_id = gr.Dropdown(
label="Выберите или введите модель",
choices=available_models,
value="stabilityai/sdxl-turbo",
allow_custom_value=True,
scale=3
)
prompt = gr.Textbox(
label="Промпт",
placeholder="Введите описание изображения...",
lines=2
)
negative_prompt = gr.Textbox(
label="Негативный промпт",
placeholder="Что исключить из изображения...",
lines=2
)
with gr.Accordion("Настройки генерации", open=False):
with gr.Row():
seed = gr.Slider(0, 2147483647, value=42, label="Сид")
guidance_scale = gr.Slider(0.0, 20.0, value=7.5, label="Guidance Scale")
with gr.Row():
width = gr.Slider(256, 1024, value=512, step=64, label="Ширина")
height = gr.Slider(256, 1024, value=512, step=64, label="Высота")
num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Шаги генерации")
generate_btn = gr.Button("Сгенерировать", variant="primary")
output_image = gr.Image(label="Результат", show_label=False)
used_seed = gr.Number(label="Использованный сид", visible=True)
gr.Examples(
examples=examples,
inputs=[model_id, prompt],
outputs=[output_image, used_seed],
fn=infer,
cache_examples=True,
label="Примеры"
)
generate_btn.click(
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[output_image, used_seed]
)
if __name__ == "__main__":
demo.launch() |