File size: 4,092 Bytes
bd8a222
 
 
 
 
 
 
 
 
 
 
 
5408021
 
 
 
 
 
 
 
 
 
 
bd8a222
ff5b4f4
 
 
 
 
ae4daf1
ff5b4f4
 
bd8a222
5408021
bd8a222
 
 
 
 
 
 
 
acd8555
bd8a222
5408021
 
 
 
 
bd8a222
 
 
98a5d61
 
 
 
b9f1f79
 
 
 
bd8a222
 
 
 
 
 
acd8555
bd8a222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5408021
 
ff5b4f4
 
 
5408021
 
bd8a222
ff5b4f4
 
 
 
 
 
bd8a222
ff5b4f4
 
 
 
 
bd8a222
ff5b4f4
 
 
 
 
 
 
bd8a222
ff5b4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a5d61
ff5b4f4
bd8a222
 
ff5b4f4
 
 
 
98a5d61
ff5b4f4
bd8a222
 
ff5b4f4
 
bd8a222
 
5408021
bd8a222
 
 
 
5408021
bd8a222
 
 
 
 
ff5b4f4
 
bd8a222
 
 
 
 
acd8555
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import numpy as np
import random

from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def load_pipeline(model_id):
    if torch.cuda.is_available():
        torch_dtype = torch.float16
    else:
        torch_dtype = torch.float32

    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
    return pipe.to(device)

# Initialize with default model
pipe = load_pipeline("CompVis/stable-diffusion-v1-4")

available_models = [
    "CompVis/stable-diffusion-v1-4",
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2-1",
    "prompthero/openjourney",
    
]

def infer(
    model_id,
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=None,
):
    global pipe

    if model_id:
        pipe = load_pipeline(model_id)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Ensure width and height are divisible by 8
    width = max(256, (width // 8) * 8)
    height = max(256, (height // 8) * 8)

    # Set default value if num_inference_steps is None
    if num_inference_steps is None:
        num_inference_steps = 20

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=int(num_inference_steps),  # Ensure it's an integer
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template with Model Selection")

        model_id = gr.Dropdown(
            label="Model Selection",
            choices=available_models,
            value="CompVis/stable-diffusion-v1-4",
        )

        prompt = gr.Text(
            label="Prompt",
            show_label=True,
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=42,
        )

        guidance_scale = gr.Slider(
            label="Guidance scale",
            minimum=0.0,
            maximum=20.0,
            step=0.1,
            value=7.0,
        )

        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=100,
            step=1,
            value=20,
        )

        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=8,
                value=512,
            )

            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=8,
                value=512,
            )

        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            seed,
            guidance_scale,
            num_inference_steps,
            width,
            height,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()