alishafique's picture
Rename app (9).py to app.py
8169bc9 verified
raw
history blame
2.8 kB
# import torch
# print(torch.cuda.is_available()) # Should return True
# print(torch.cuda.get_device_name(0)) # Should return 'Tesla T4'
# print(torch.cuda.get_device_capability(0))
import llama_cpp
from llama_cpp import Llama
# import llama_cpp.llama_tokenizer
import gradio as gr
from huggingface_hub import hf_hub_download
model_name = "large-traversaal/Alif-1.0-8B-Instruct"
model_file = "model-Q8_0.gguf"
model_path_file = hf_hub_download(model_name,
filename=model_file,)
# llama = llama_cpp.Llama.from_pretrained(
# repo_id="large-traversaal/Alif-1.0-8B-Instruct",
# filename="*model-Q6_K.gguf",
# tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained(
# "large-traversaal/Alif-1.0-8B-Instruct"
# ),
# verbose=False,
# )
# llama = Llama(model_path="./model-Q8_0.gguf", verbose=False)
llama = Llama(
model_path=model_path_file,
n_gpu_layers=40, # Adjust based on VRAM
n_threads=8, # Match CPU cores
n_batch=512, # Optimize for better VRAM usage
n_ctx=4096, # Context window size
verbose=True # Enable debug logging
)
chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:"""
# prompt = "قابل تجدید توانائی کیا ہے؟"
prompt = "شہر کراچی کے بارے میں بتاؤ"
# prompt = chat_prompt.format(inp=prompt)
# response = llama(prompt, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
# # prompt = "قابل تجدید توانائی کیا ہے؟"
# stop_tokens = ["\n\n", "<|end_of_text|>"] # Stops after natural pauses or end-of-text token
# Function to generate text with streaming output
def chat_with_ai(prompt):
query = chat_prompt.format(inp=prompt)
#response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
# response = llama.create_chat_completion(
# messages = [
# {"role": "system", "content": "You are a Urdu Chatbot."},
# {
# "role": "user",
# "content": prompt
# }
# ],
# stream=True
# )
text = ""
for chunk in response:
content = chunk["choices"][0]["text"]
if content:
text += content
yield text
# Gradio UI setup
demo = gr.Interface(
fn=chat_with_ai, # Streaming function
inputs="text", # User input
outputs="text", # Model response
title="💬 Streaming AI Chatbot",
description="Enter a prompt and get a streamed response from Llama.cpp (GGUF)."
)
# Launch the Gradio app
demo.launch(share=True)