Spaces:
Sleeping
Sleeping
File size: 3,793 Bytes
6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 f716764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import pandas as pd
df = pd.read_csv('./drugs_side_effects_drugs_com.csv')
df = df[['drug_name', 'medical_condition', 'side_effects']]
df.dropna(inplace=True)
context_data = []
for i in range(len(df)):
context = ""
for j in range(3):
context += df.columns[j]
context += ": "
context += df.iloc[i][j]
context += " "
context_data.append(context)
import os
# Get the secret key from the environment
groq_key = os.environ.get('gloq_key')
## LLM used for RAG
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="medical_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
# add data to vector nstore
vectorstore.add_texts(context_data)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""You are a pharmacist and medical expert.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
import gradio as gr
# Function to stream responses
def rag_memory_stream(text):
partial_text = ""
for new_text in rag_chain.stream(text): # Assuming rag_chain is pre-defined
partial_text += new_text
yield partial_text
# Title and description for the app
title = "AI Medical Assistant for Drug Information and Side Effects"
description = """
This AI-powered chatbot is designed to provide reliable information about drugs, their side effects, and related medical conditions.
It utilizes the Groq API and LangChain to deliver real-time, accurate responses.
Ask questions like:
1. What are the side effects of taking aspirin daily?
2. What is the recommended treatment for a common cold?
3. What is the disease for constant fatigue and muscle weakness?
4. What are the symptoms of diabetes?
5. How can hypertension be managed?
**Disclaimer:** This chatbot is for informational purposes only and is not a substitute for professional medical advice.
"""
# Customizing Gradio interface for a better look
demo = gr.Interface(
fn=rag_memory_stream,
inputs=gr.Textbox(
lines=2,
placeholder="Type your medical question here...",
label="Your Medical Question"
),
outputs=gr.Textbox(
lines=10,
label="AI Response"
),
title=title,
description=description,
theme="compact", # Adding a compact theme for a polished look
allow_flagging="never"
)
# # Launching the app
# demo.launch(share=True)
# import gradio as gr
# def rag_memory_stream(text):
# partial_text = ""
# for new_text in rag_chain.stream(text):
# partial_text += new_text
# yield partial_text
# examples = ['I feel dizzy', 'what is the possible sickness for fatigue']
# title = "Real-time AI App with Groq API and LangChain to Answer medical questions"
# demo = gr.Interface(
# title=title,
# fn=rag_memory_stream,
# inputs="text",
# outputs="text",
# examples=examples,
# allow_flagging="never",
# )
if __name__ == "__main__":
demo.launch() |