Spaces:
Sleeping
Sleeping
File size: 4,436 Bytes
6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 c65ff09 8fccf3e 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 3c2aa29 6773e36 0a26f07 6773e36 ba4dea2 6773e36 ba4dea2 6773e36 699d994 94ce4e1 699d994 6773e36 699d994 6773e36 8fccf3e 94ce4e1 8fccf3e 3c2aa29 6773e36 c65ff09 ba4dea2 c65ff09 699d994 c65ff09 3c2aa29 f716764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import pandas as pd
df = pd.read_csv('./drugs_side_effects_drugs_com.csv')
df = df[['drug_name', 'medical_condition', 'side_effects']]
df.dropna(inplace=True)
context_data = []
for i in range(2):
context = " | ".join([f"{col}: {df.iloc[i][col]}" for col in df.columns])
context_data.append(context)
import os
# Get the secret key from the environment
groq_key = os.environ.get('gloq_key')
## LLM used for RAG
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="medical_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
# add data to vector nstore
vectorstore.add_texts(context_data)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""
You are CareBot, a pharmacist and medical expert known as Treasure. Your goal is to provide empathetic, supportive, and detailed responses tailored to the user's needs.
Use the provided context to answer the question. If the question is related to medical condition, drug name and side effects that are not in the context, look online and answer them.
Behavior Guidelines:
1. Introduction: Greet the user as Treasure during the first interaction.
2. Personalization: Adapt responses to the user's tone and emotional state.
3. Empathy: Respond warmly to the user's concerns and questions.
4. Evidence-Based: Use reliable sources to answer queries. For missing data, advise seeking professional consultation.
5. Focus: Avoid providing off-topic information; address the user's query specifically.
6. Encouragement: Balance acknowledging concerns with actionable and constructive suggestions.
7. Context Integration: Use the given context to deliver accurate and relevant answers without repeating the context explicitly.
Objective:
Deliver thoughtful, empathetic, and medically sound advice based on the user’s query.
Response Style:
- Detailed but concise
- Professional, empathetic tone
- Clear and actionable guidance
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
import gradio as gr
# Function to stream responses
def rag_memory_stream(message, history):
partial_text = ""
for new_text in rag_chain.stream(message): # Assuming rag_chain is pre-defined
partial_text += new_text
yield partial_text
examples = [
"What are the side effects of aspirin?",
"Can ibuprofen cause dizziness?"
]
# Title and description for the app
title = "CareBot: AI Medical Assistant for Drug Information and Side Effects"
description = """
This AI-powered chatbot provides reliable information about drugs, their side effects, and related medical conditions.
Powered by the Groq API and LangChain, it delivers real-time, accurate responses.
Example Questions:
- What are the side effects of aspirin?
- Can ibuprofen cause dizziness?
Disclaimer: This chatbot is for informational purposes only and not a substitute for professional medical advice.
"""
# Customizing Gradio interface for a better look
# demo = gr.Interface(
# fn=rag_memory_stream,
# inputs=gr.Textbox(
# lines=5,
# placeholder="Type your medical question here...",
# label="Your Medical Question"
# ),
# outputs=gr.Textbox(
# lines=15, # Reduced line count for better layout
# label="AI Response"
# ),
# title=title,
# description=description,
# allow_flagging="never"
# )
demo = gr.ChatInterface(fn=rag_memory_stream,
type="messages",
title=title,
description=description,
fill_height=True,
examples=examples,
theme="glass",
)
if __name__ == "__main__":
demo.launch() |