Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team All rights reserved. | |
# Copyright 2021 NVIDIA Corporation. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
A subclass of `Trainer` specific to Question-Answering tasks | |
""" | |
import logging | |
import os | |
import quant_trainer | |
import torch | |
from torch.utils.data import DataLoader | |
from transformers import Trainer, is_torch_tpu_available | |
from transformers.trainer_utils import PredictionOutput | |
logger = logging.getLogger(__name__) | |
if is_torch_tpu_available(check_device=False): | |
import torch_xla.core.xla_model as xm | |
import torch_xla.debug.metrics as met | |
class QuestionAnsweringTrainer(Trainer): | |
def __init__(self, *args, eval_examples=None, post_process_function=None, quant_trainer_args=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.eval_examples = eval_examples | |
self.post_process_function = post_process_function | |
self.quant_trainer_args = quant_trainer_args | |
self.calib_num = 128 # default number of calibration samples | |
def get_calib_dataloader(self, calib_dataset=None): | |
""" | |
Returns the calibration dataloader :class:`~torch.utils.data.DataLoader`. | |
Args: | |
calib_dataset (:obj:`torch.utils.data.Dataset`, `optional`) | |
""" | |
if calib_dataset is None and self.calib_dataset is None: | |
raise ValueError("Trainer: calibration requires an calib_dataset.") | |
calib_dataset = calib_dataset if calib_dataset is not None else self.calib_dataset | |
calib_dataset = self._remove_unused_columns(calib_dataset, description="Calibration") | |
return DataLoader( | |
calib_dataset, | |
batch_size=self.args.eval_batch_size, | |
collate_fn=self.data_collator, | |
drop_last=self.args.dataloader_drop_last, | |
num_workers=self.args.dataloader_num_workers, | |
pin_memory=self.args.dataloader_pin_memory, | |
shuffle=True, | |
) | |
def calibrate(self, calib_dataset=None): | |
calib_dataset = self.train_dataset if calib_dataset is None else calib_dataset | |
calib_dataloader = self.get_calib_dataloader(calib_dataset) | |
model = self.model | |
quant_trainer.configure_model(model, self.quant_trainer_args, calib=True) | |
model.eval() | |
quant_trainer.enable_calibration(model) | |
logger.info("***** Running calibration *****") | |
logger.info(f" Num examples = {self.calib_num}") | |
logger.info(f" Batch size = {calib_dataloader.batch_size}") | |
for step, inputs in enumerate(calib_dataloader): | |
# Prediction step | |
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only=True) | |
if (step + 1) * calib_dataloader.batch_size >= self.calib_num: | |
break | |
quant_trainer.finish_calibration(model, self.quant_trainer_args) | |
self.model = model | |
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): | |
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset | |
eval_dataloader = self.get_eval_dataloader(eval_dataset) | |
eval_examples = self.eval_examples if eval_examples is None else eval_examples | |
# Temporarily disable metric computation, we will do it in the loop here. | |
compute_metrics = self.compute_metrics | |
self.compute_metrics = None | |
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
try: | |
output = eval_loop( | |
eval_dataloader, | |
description="Evaluation", | |
# No point gathering the predictions if there are no metrics, otherwise we defer to | |
# self.args.prediction_loss_only | |
prediction_loss_only=True if compute_metrics is None else None, | |
ignore_keys=ignore_keys, | |
) | |
finally: | |
self.compute_metrics = compute_metrics | |
if self.post_process_function is not None and self.compute_metrics is not None: | |
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) | |
metrics = self.compute_metrics(eval_preds) | |
# Prefix all keys with metric_key_prefix + '_' | |
for key in list(metrics.keys()): | |
if not key.startswith(f"{metric_key_prefix}_"): | |
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
self.log(metrics) | |
else: | |
metrics = {} | |
if self.args.tpu_metrics_debug or self.args.debug: | |
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) | |
xm.master_print(met.metrics_report()) | |
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) | |
return metrics | |
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): | |
predict_dataloader = self.get_test_dataloader(predict_dataset) | |
# Temporarily disable metric computation, we will do it in the loop here. | |
compute_metrics = self.compute_metrics | |
self.compute_metrics = None | |
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
try: | |
output = eval_loop( | |
predict_dataloader, | |
description="Prediction", | |
# No point gathering the predictions if there are no metrics, otherwise we defer to | |
# self.args.prediction_loss_only | |
prediction_loss_only=True if compute_metrics is None else None, | |
ignore_keys=ignore_keys, | |
) | |
finally: | |
self.compute_metrics = compute_metrics | |
if self.post_process_function is None or self.compute_metrics is None: | |
return output | |
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") | |
metrics = self.compute_metrics(predictions) | |
# Prefix all keys with metric_key_prefix + '_' | |
for key in list(metrics.keys()): | |
if not key.startswith(f"{metric_key_prefix}_"): | |
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics) | |
def save_onnx(self, output_dir="./"): | |
eval_dataset = self.eval_dataset | |
eval_dataloader = self.get_eval_dataloader(eval_dataset) | |
batch = next(iter(eval_dataloader)) | |
# saving device - to make it consistent | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# convert to tuple | |
input_tuple = tuple(v.to(device) for k, v in batch.items()) | |
logger.info("Converting model to be onnx compatible") | |
from pytorch_quantization.nn import TensorQuantizer | |
TensorQuantizer.use_fb_fake_quant = True | |
model = self.model.to(device) | |
model.eval() | |
model.float() | |
model_to_save = model.module if hasattr(model, "module") else model | |
quant_trainer.configure_model(model_to_save, self.quant_trainer_args) | |
output_model_file = os.path.join(output_dir, "model.onnx") | |
logger.info(f"exporting model to {output_model_file}") | |
axes = {0: "batch_size", 1: "seq_len"} | |
torch.onnx.export( | |
model_to_save, | |
input_tuple, | |
output_model_file, | |
export_params=True, | |
opset_version=13, | |
do_constant_folding=True, | |
input_names=["input_ids", "attention_mask", "token_type_ids"], | |
output_names=["output_start_logits", "output_end_logits"], | |
dynamic_axes={ | |
"input_ids": axes, | |
"attention_mask": axes, | |
"token_type_ids": axes, | |
"output_start_logits": axes, | |
"output_end_logits": axes, | |
}, | |
verbose=True, | |
) | |
logger.info("onnx export finished") | |