Spaces:
Runtime error
Runtime error
**NOTE**: This example is outdated and is not longer actively maintained. Please | |
follow the new instructions of fine-tuning Wav2Vec2 [here](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/README.md) | |
## Fine-tuning Wav2Vec2 | |
The `run_asr.py` script allows one to fine-tune pretrained Wav2Vec2 models that can be found [here](https://huggingface.co/models?search=facebook/wav2vec2). | |
This finetuning script can also be run as a google colab [TODO: here]( ). | |
### Fine-Tuning with TIMIT | |
Let's take a look at the [script](./finetune_base_timit_asr.sh) used to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | |
with the [TIMIT dataset](https://huggingface.co/datasets/timit_asr): | |
```bash | |
#!/usr/bin/env bash | |
python run_asr.py \ | |
--output_dir="./wav2vec2-base-timit-asr" \ | |
--num_train_epochs="30" \ | |
--per_device_train_batch_size="20" \ | |
--per_device_eval_batch_size="20" \ | |
--evaluation_strategy="steps" \ | |
--save_steps="500" \ | |
--eval_steps="100" \ | |
--logging_steps="50" \ | |
--learning_rate="5e-4" \ | |
--warmup_steps="3000" \ | |
--model_name_or_path="facebook/wav2vec2-base" \ | |
--fp16 \ | |
--dataset_name="timit_asr" \ | |
--train_split_name="train" \ | |
--validation_split_name="test" \ | |
--orthography="timit" \ | |
--preprocessing_num_workers="$(nproc)" \ | |
--group_by_length \ | |
--freeze_feature_extractor \ | |
--verbose_logging \ | |
``` | |
The resulting model and inference examples can be found [here](https://huggingface.co/elgeish/wav2vec2-base-timit-asr). | |
Some of the arguments above may look unfamiliar, let's break down what's going on: | |
`--orthography="timit"` applies certain text preprocessing rules, for tokenization and normalization, to clean up the dataset. | |
In this case, we use the following instance of `Orthography`: | |
```python | |
Orthography( | |
do_lower_case=True, | |
# break compounds like "quarter-century-old" and replace pauses "--" | |
translation_table=str.maketrans({"-": " "}), | |
) | |
``` | |
The instance above is used as follows: | |
* creates a tokenizer with `do_lower_case=True` (ignores casing for input and lowercases output when decoding) | |
* replaces `"-"` with `" "` to break compounds like `"quarter-century-old"` and to clean up suspended hyphens | |
* cleans up consecutive whitespaces (replaces them with a single space: `" "`) | |
* removes characters not in vocabulary (lacking respective sound units) | |
`--verbose_logging` logs text preprocessing updates and when evaluating, using the validation split every `eval_steps`, | |
logs references and predictions. | |
### Fine-Tuning with Arabic Speech Corpus | |
Other datasets, like the [Arabic Speech Corpus dataset](https://huggingface.co/datasets/arabic_speech_corpus), | |
require more work! Let's take a look at the [script](./finetune_large_xlsr_53_arabic_speech_corpus.sh) | |
used to fine-tune [wav2vec2-large-xlsr-53](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic): | |
```bash | |
#!/usr/bin/env bash | |
python run_asr.py \ | |
--output_dir="./wav2vec2-large-xlsr-53-arabic-speech-corpus" \ | |
--num_train_epochs="50" \ | |
--per_device_train_batch_size="1" \ | |
--per_device_eval_batch_size="1" \ | |
--gradient_accumulation_steps="8" \ | |
--evaluation_strategy="steps" \ | |
--save_steps="500" \ | |
--eval_steps="100" \ | |
--logging_steps="50" \ | |
--learning_rate="5e-4" \ | |
--warmup_steps="3000" \ | |
--model_name_or_path="elgeish/wav2vec2-large-xlsr-53-arabic" \ | |
--fp16 \ | |
--dataset_name="arabic_speech_corpus" \ | |
--train_split_name="train" \ | |
--validation_split_name="test" \ | |
--max_duration_in_seconds="15" \ | |
--orthography="buckwalter" \ | |
--preprocessing_num_workers="$(nproc)" \ | |
--group_by_length \ | |
--freeze_feature_extractor \ | |
--target_feature_extractor_sampling_rate \ | |
--verbose_logging \ | |
``` | |
First, let's understand how this dataset represents Arabic text; it uses a format called | |
[Buckwalter transliteration](https://en.wikipedia.org/wiki/Buckwalter_transliteration). | |
We use the [lang-trans](https://github.com/kariminf/lang-trans) package to convert back to Arabic when logging. | |
The Buckwalter format only includes ASCII characters, some of which are non-alpha (e.g., `">"` maps to `"أ"`). | |
`--orthography="buckwalter"` applies certain text preprocessing rules, for tokenization and normalization, to clean up the dataset. In this case, we use the following instance of `Orthography`: | |
```python | |
Orthography( | |
vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"), | |
word_delimiter_token="/", # "|" is Arabic letter alef with madda above | |
words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset | |
untransliterator=arabic.buckwalter.untransliterate, | |
translation_table=str.maketrans(translation_table = { | |
"-": " ", # sometimes used to represent pauses | |
"^": "v", # fixing "tha" in arabic_speech_corpus dataset | |
}), | |
) | |
``` | |
The instance above is used as follows: | |
* creates a tokenizer with Buckwalter vocabulary and `word_delimiter_token="/"` | |
* replaces `"-"` with `" "` to clean up hyphens and fixes the orthography for `"ث"` | |
* removes words used as indicators (in this case, `"sil"` is used for silence) | |
* cleans up consecutive whitespaces (replaces them with a single space: `" "`) | |
* removes characters not in vocabulary (lacking respective sound units) | |
`--verbose_logging` logs text preprocessing updates and when evaluating, using the validation split every `eval_steps`, | |
logs references and predictions. Using the Buckwalter format, text is also logged in Arabic abjad. | |
`--target_feature_extractor_sampling_rate` resamples audio to target feature extractor's sampling rate (16kHz). | |
`--max_duration_in_seconds="15"` filters out examples whose audio is longer than the specified limit, | |
which helps with capping GPU memory usage. | |
### DeepSpeed Integration | |
To learn how to deploy Deepspeed Integration please refer to [this guide](https://huggingface.co/transformers/main/main_classes/deepspeed.html#deepspeed-trainer-integration). | |
But to get started quickly all you need is to install: | |
``` | |
pip install deepspeed | |
``` | |
and then use the default configuration files in this directory: | |
* `ds_config_wav2vec2_zero2.json` | |
* `ds_config_wav2vec2_zero3.json` | |
Here are examples of how you can use DeepSpeed: | |
(edit the value for `--num_gpus` to match the number of GPUs you have) | |
ZeRO-2: | |
``` | |
PYTHONPATH=../../../src deepspeed --num_gpus 2 \ | |
run_asr.py \ | |
--output_dir=output_dir --num_train_epochs=2 --per_device_train_batch_size=2 \ | |
--per_device_eval_batch_size=2 --evaluation_strategy=steps --save_steps=500 --eval_steps=100 \ | |
--logging_steps=5 --learning_rate=5e-4 --warmup_steps=3000 \ | |
--model_name_or_path=patrickvonplaten/wav2vec2_tiny_random_robust \ | |
--dataset_name=hf-internal-testing/librispeech_asr_dummy --dataset_config_name=clean \ | |
--train_split_name=validation --validation_split_name=validation --orthography=timit \ | |
--preprocessing_num_workers=1 --group_by_length --freeze_feature_extractor --verbose_logging \ | |
--deepspeed ds_config_wav2vec2_zero2.json | |
``` | |
For ZeRO-2 with more than 1 gpu you need to use (which is already in the example configuration file): | |
``` | |
"zero_optimization": { | |
... | |
"find_unused_parameters": true, | |
... | |
} | |
``` | |
ZeRO-3: | |
``` | |
PYTHONPATH=../../../src deepspeed --num_gpus 2 \ | |
run_asr.py \ | |
--output_dir=output_dir --num_train_epochs=2 --per_device_train_batch_size=2 \ | |
--per_device_eval_batch_size=2 --evaluation_strategy=steps --save_steps=500 --eval_steps=100 \ | |
--logging_steps=5 --learning_rate=5e-4 --warmup_steps=3000 \ | |
--model_name_or_path=patrickvonplaten/wav2vec2_tiny_random_robust \ | |
--dataset_name=hf-internal-testing/librispeech_asr_dummy --dataset_config_name=clean \ | |
--train_split_name=validation --validation_split_name=validation --orthography=timit \ | |
--preprocessing_num_workers=1 --group_by_length --freeze_feature_extractor --verbose_logging \ | |
--deepspeed ds_config_wav2vec2_zero3.json | |
``` | |
### Pretraining Wav2Vec2 | |
The `run_pretrain.py` script allows one to pretrain a Wav2Vec2 model from scratch using Wav2Vec2's contrastive loss objective (see official [paper](https://arxiv.org/abs/2006.11477) for more information). | |
It is recommended to pre-train Wav2Vec2 with Trainer + Deepspeed (please refer to [this guide](https://huggingface.co/transformers/main/main_classes/deepspeed.html#deepspeed-trainer-integration) for more information). | |
Here is an example of how you can use DeepSpeed ZeRO-2 to pretrain a small Wav2Vec2 model: | |
``` | |
PYTHONPATH=../../../src deepspeed --num_gpus 4 run_pretrain.py \ | |
--output_dir="./wav2vec2-base-libri-100h" \ | |
--num_train_epochs="3" \ | |
--per_device_train_batch_size="32" \ | |
--per_device_eval_batch_size="32" \ | |
--gradient_accumulation_steps="2" \ | |
--save_total_limit="3" \ | |
--save_steps="500" \ | |
--logging_steps="10" \ | |
--learning_rate="5e-4" \ | |
--weight_decay="0.01" \ | |
--warmup_steps="3000" \ | |
--model_name_or_path="patrickvonplaten/wav2vec2-base-libri-100h" \ | |
--dataset_name="librispeech_asr" \ | |
--dataset_config_name="clean" \ | |
--train_split_name="train.100" \ | |
--preprocessing_num_workers="4" \ | |
--max_duration_in_seconds="10.0" \ | |
--group_by_length \ | |
--verbose_logging \ | |
--fp16 \ | |
--deepspeed ds_config_wav2vec2_zero2.json \ | |
``` | |
### Forced Alignment | |
Character level forced alignment for audio and text pairs with wav2vec2 models finetuned on ASR task for a specific language. | |
Inspired by [this](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html) Pytorch tutorial. | |
#### Input Formats | |
Input format in script.txt Input format in wavs directroy | |
0000 sentence1 0000.wav | |
0001 sentence2 0001.wav | |
#### Output Format | |
Output directory will contain 0000.txt and 0001.txt. Each file will have format like below | |
char score start_ms end_ms | |
h 0.25 1440 1520 | |
#### Run command | |
``` | |
python alignment.py \ | |
--model_name="arijitx/wav2vec2-xls-r-300m-bengali" \ | |
--wav_dir="./wavs" | |
--text_file="script.txt" \ | |
--input_wavs_sr=48000 \ | |
--output_dir="./out_alignment" \ | |
--cuda | |
``` | |