Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Script for training a masked language model on TPU.""" | |
import argparse | |
import logging | |
import os | |
import re | |
import tensorflow as tf | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
DataCollatorForLanguageModeling, | |
PushToHubCallback, | |
TFAutoModelForMaskedLM, | |
create_optimizer, | |
) | |
logger = logging.getLogger(__name__) | |
AUTO = tf.data.AUTOTUNE | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Train a masked language model on TPU.") | |
parser.add_argument( | |
"--pretrained_model_config", | |
type=str, | |
default="roberta-base", | |
help="The model config to use. Note that we don't copy the model's weights, only the config!", | |
) | |
parser.add_argument( | |
"--tokenizer", | |
type=str, | |
default="unigram-tokenizer-wikitext", | |
help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.", | |
) | |
parser.add_argument( | |
"--per_replica_batch_size", | |
type=int, | |
default=8, | |
help="Batch size per TPU core.", | |
) | |
parser.add_argument( | |
"--no_tpu", | |
action="store_true", | |
help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.", | |
) | |
parser.add_argument( | |
"--tpu_name", | |
type=str, | |
help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.", | |
default="local", | |
) | |
parser.add_argument( | |
"--tpu_zone", | |
type=str, | |
help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.", | |
) | |
parser.add_argument( | |
"--gcp_project", type=str, help="Google cloud project name. Only used for non-Colab TPU nodes." | |
) | |
parser.add_argument( | |
"--bfloat16", | |
action="store_true", | |
help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.", | |
) | |
parser.add_argument( | |
"--train_dataset", | |
type=str, | |
help="Path to training dataset to load. If the path begins with `gs://`" | |
" then the dataset will be loaded from a Google Cloud Storage bucket.", | |
) | |
parser.add_argument( | |
"--shuffle_buffer_size", | |
type=int, | |
default=2**18, # Default corresponds to a 1GB buffer for seq_len 512 | |
help="Size of the shuffle buffer (in samples)", | |
) | |
parser.add_argument( | |
"--eval_dataset", | |
type=str, | |
help="Path to evaluation dataset to load. If the path begins with `gs://`" | |
" then the dataset will be loaded from a Google Cloud Storage bucket.", | |
) | |
parser.add_argument( | |
"--num_epochs", | |
type=int, | |
default=1, | |
help="Number of epochs to train for.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Learning rate to use for training.", | |
) | |
parser.add_argument( | |
"--weight_decay_rate", | |
type=float, | |
default=1e-3, | |
help="Weight decay rate to use for training.", | |
) | |
parser.add_argument( | |
"--max_length", | |
type=int, | |
default=512, | |
help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py", | |
) | |
parser.add_argument( | |
"--mlm_probability", | |
type=float, | |
default=0.15, | |
help="Fraction of tokens to mask during training.", | |
) | |
parser.add_argument("--output_dir", type=str, required=True, help="Path to save model checkpoints to.") | |
parser.add_argument("--hub_model_id", type=str, help="Model ID to upload to on the Hugging Face Hub.") | |
args = parser.parse_args() | |
return args | |
def initialize_tpu(args): | |
try: | |
if args.tpu_name: | |
tpu = tf.distribute.cluster_resolver.TPUClusterResolver( | |
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project | |
) | |
else: | |
tpu = tf.distribute.cluster_resolver.TPUClusterResolver() | |
except ValueError: | |
raise RuntimeError( | |
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " | |
"--gcp_project. When running on a TPU VM, use --tpu_name local." | |
) | |
tf.config.experimental_connect_to_cluster(tpu) | |
tf.tpu.experimental.initialize_tpu_system(tpu) | |
return tpu | |
def count_samples(file_list): | |
num_samples = 0 | |
for file in file_list: | |
filename = file.split("/")[-1] | |
sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1) | |
sample_count = int(sample_count) | |
num_samples += sample_count | |
return num_samples | |
def prepare_dataset(records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None): | |
num_samples = count_samples(records) | |
dataset = tf.data.Dataset.from_tensor_slices(records) | |
if shuffle: | |
dataset = dataset.shuffle(len(dataset)) | |
dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=AUTO) | |
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here | |
dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples)) | |
dataset = dataset.map(decode_fn, num_parallel_calls=AUTO) | |
if shuffle: | |
assert shuffle_buffer_size is not None | |
dataset = dataset.shuffle(args.shuffle_buffer_size) | |
dataset = dataset.batch(batch_size, drop_remainder=True) | |
dataset = dataset.map(mask_fn, num_parallel_calls=AUTO) | |
dataset = dataset.prefetch(AUTO) | |
return dataset | |
def main(args): | |
if not args.no_tpu: | |
tpu = initialize_tpu(args) | |
strategy = tf.distribute.TPUStrategy(tpu) | |
else: | |
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") | |
if args.bfloat16: | |
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16") | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) | |
config = AutoConfig.from_pretrained(args.pretrained_model_config) | |
config.vocab_size = tokenizer.vocab_size | |
training_records = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord")) | |
if not training_records: | |
raise ValueError(f"No .tfrecord files found in {args.train_dataset}.") | |
eval_records = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord")) | |
if not eval_records: | |
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}.") | |
num_train_samples = count_samples(training_records) | |
steps_per_epoch = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) | |
total_train_steps = steps_per_epoch * args.num_epochs | |
with strategy.scope(): | |
model = TFAutoModelForMaskedLM.from_config(config) | |
model(model.dummy_inputs) # Pass some dummy inputs through the model to ensure all the weights are built | |
optimizer, schedule = create_optimizer( | |
num_train_steps=total_train_steps, | |
num_warmup_steps=total_train_steps // 20, | |
init_lr=args.learning_rate, | |
weight_decay_rate=args.weight_decay_rate, | |
) | |
# Transformers models compute the right loss for their task by default when labels are passed, and will | |
# use this for training unless you specify your own loss function in compile(). | |
model.compile(optimizer=optimizer, metrics=["accuracy"]) | |
def decode_fn(example): | |
features = { | |
"input_ids": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)), | |
"attention_mask": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)), | |
} | |
return tf.io.parse_single_example(example, features) | |
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can | |
# use their methods in our data pipeline. | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, mlm_probability=args.mlm_probability, mlm=True, return_tensors="tf" | |
) | |
def mask_with_collator(batch): | |
# TF really needs an isin() function | |
special_tokens_mask = ( | |
~tf.cast(batch["attention_mask"], tf.bool) | |
| (batch["input_ids"] == tokenizer.cls_token_id) | |
| (batch["input_ids"] == tokenizer.sep_token_id) | |
) | |
batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens( | |
batch["input_ids"], | |
vocab_size=len(tokenizer), | |
mask_token_id=tokenizer.mask_token_id, | |
special_tokens_mask=special_tokens_mask, | |
) | |
return batch | |
batch_size = args.per_replica_batch_size * strategy.num_replicas_in_sync | |
train_dataset = prepare_dataset( | |
training_records, | |
decode_fn=decode_fn, | |
mask_fn=mask_with_collator, | |
batch_size=batch_size, | |
shuffle=True, | |
shuffle_buffer_size=args.shuffle_buffer_size, | |
) | |
eval_dataset = prepare_dataset( | |
eval_records, | |
decode_fn=decode_fn, | |
mask_fn=mask_with_collator, | |
batch_size=batch_size, | |
shuffle=False, | |
) | |
callbacks = [] | |
if args.hub_model_id: | |
callbacks.append( | |
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=tokenizer) | |
) | |
model.fit( | |
train_dataset, | |
validation_data=eval_dataset, | |
epochs=args.num_epochs, | |
callbacks=callbacks, | |
) | |
model.save_pretrained(args.output_dir) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |