Spaces:
No application file
No application file
culture
commited on
Commit
·
39f1cda
1
Parent(s):
3df44eb
Upload gfpgan/archs/gfpganv1_clean_arch.py
Browse files
gfpgan/archs/gfpganv1_clean_arch.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from .stylegan2_clean_arch import StyleGAN2GeneratorClean
|
9 |
+
|
10 |
+
|
11 |
+
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
|
12 |
+
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
|
13 |
+
|
14 |
+
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
out_size (int): The spatial size of outputs.
|
18 |
+
num_style_feat (int): Channel number of style features. Default: 512.
|
19 |
+
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
20 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
21 |
+
narrow (float): The narrow ratio for channels. Default: 1.
|
22 |
+
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
|
26 |
+
super(StyleGAN2GeneratorCSFT, self).__init__(
|
27 |
+
out_size,
|
28 |
+
num_style_feat=num_style_feat,
|
29 |
+
num_mlp=num_mlp,
|
30 |
+
channel_multiplier=channel_multiplier,
|
31 |
+
narrow=narrow)
|
32 |
+
self.sft_half = sft_half
|
33 |
+
|
34 |
+
def forward(self,
|
35 |
+
styles,
|
36 |
+
conditions,
|
37 |
+
input_is_latent=False,
|
38 |
+
noise=None,
|
39 |
+
randomize_noise=True,
|
40 |
+
truncation=1,
|
41 |
+
truncation_latent=None,
|
42 |
+
inject_index=None,
|
43 |
+
return_latents=False):
|
44 |
+
"""Forward function for StyleGAN2GeneratorCSFT.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
styles (list[Tensor]): Sample codes of styles.
|
48 |
+
conditions (list[Tensor]): SFT conditions to generators.
|
49 |
+
input_is_latent (bool): Whether input is latent style. Default: False.
|
50 |
+
noise (Tensor | None): Input noise or None. Default: None.
|
51 |
+
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
52 |
+
truncation (float): The truncation ratio. Default: 1.
|
53 |
+
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
54 |
+
inject_index (int | None): The injection index for mixing noise. Default: None.
|
55 |
+
return_latents (bool): Whether to return style latents. Default: False.
|
56 |
+
"""
|
57 |
+
# style codes -> latents with Style MLP layer
|
58 |
+
if not input_is_latent:
|
59 |
+
styles = [self.style_mlp(s) for s in styles]
|
60 |
+
# noises
|
61 |
+
if noise is None:
|
62 |
+
if randomize_noise:
|
63 |
+
noise = [None] * self.num_layers # for each style conv layer
|
64 |
+
else: # use the stored noise
|
65 |
+
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
66 |
+
# style truncation
|
67 |
+
if truncation < 1:
|
68 |
+
style_truncation = []
|
69 |
+
for style in styles:
|
70 |
+
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
71 |
+
styles = style_truncation
|
72 |
+
# get style latents with injection
|
73 |
+
if len(styles) == 1:
|
74 |
+
inject_index = self.num_latent
|
75 |
+
|
76 |
+
if styles[0].ndim < 3:
|
77 |
+
# repeat latent code for all the layers
|
78 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
79 |
+
else: # used for encoder with different latent code for each layer
|
80 |
+
latent = styles[0]
|
81 |
+
elif len(styles) == 2: # mixing noises
|
82 |
+
if inject_index is None:
|
83 |
+
inject_index = random.randint(1, self.num_latent - 1)
|
84 |
+
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
85 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
86 |
+
latent = torch.cat([latent1, latent2], 1)
|
87 |
+
|
88 |
+
# main generation
|
89 |
+
out = self.constant_input(latent.shape[0])
|
90 |
+
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
91 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
92 |
+
|
93 |
+
i = 1
|
94 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
95 |
+
noise[2::2], self.to_rgbs):
|
96 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
97 |
+
|
98 |
+
# the conditions may have fewer levels
|
99 |
+
if i < len(conditions):
|
100 |
+
# SFT part to combine the conditions
|
101 |
+
if self.sft_half: # only apply SFT to half of the channels
|
102 |
+
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
|
103 |
+
out_sft = out_sft * conditions[i - 1] + conditions[i]
|
104 |
+
out = torch.cat([out_same, out_sft], dim=1)
|
105 |
+
else: # apply SFT to all the channels
|
106 |
+
out = out * conditions[i - 1] + conditions[i]
|
107 |
+
|
108 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
109 |
+
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
110 |
+
i += 2
|
111 |
+
|
112 |
+
image = skip
|
113 |
+
|
114 |
+
if return_latents:
|
115 |
+
return image, latent
|
116 |
+
else:
|
117 |
+
return image, None
|
118 |
+
|
119 |
+
|
120 |
+
class ResBlock(nn.Module):
|
121 |
+
"""Residual block with bilinear upsampling/downsampling.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
in_channels (int): Channel number of the input.
|
125 |
+
out_channels (int): Channel number of the output.
|
126 |
+
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, in_channels, out_channels, mode='down'):
|
130 |
+
super(ResBlock, self).__init__()
|
131 |
+
|
132 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
133 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
134 |
+
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
135 |
+
if mode == 'down':
|
136 |
+
self.scale_factor = 0.5
|
137 |
+
elif mode == 'up':
|
138 |
+
self.scale_factor = 2
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
142 |
+
# upsample/downsample
|
143 |
+
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
144 |
+
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
145 |
+
# skip
|
146 |
+
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
147 |
+
skip = self.skip(x)
|
148 |
+
out = out + skip
|
149 |
+
return out
|
150 |
+
|
151 |
+
|
152 |
+
@ARCH_REGISTRY.register()
|
153 |
+
class GFPGANv1Clean(nn.Module):
|
154 |
+
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
|
155 |
+
|
156 |
+
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
157 |
+
|
158 |
+
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
out_size (int): The spatial size of outputs.
|
162 |
+
num_style_feat (int): Channel number of style features. Default: 512.
|
163 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
164 |
+
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
|
165 |
+
fix_decoder (bool): Whether to fix the decoder. Default: True.
|
166 |
+
|
167 |
+
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
168 |
+
input_is_latent (bool): Whether input is latent style. Default: False.
|
169 |
+
different_w (bool): Whether to use different latent w for different layers. Default: False.
|
170 |
+
narrow (float): The narrow ratio for channels. Default: 1.
|
171 |
+
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
out_size,
|
177 |
+
num_style_feat=512,
|
178 |
+
channel_multiplier=1,
|
179 |
+
decoder_load_path=None,
|
180 |
+
fix_decoder=True,
|
181 |
+
# for stylegan decoder
|
182 |
+
num_mlp=8,
|
183 |
+
input_is_latent=False,
|
184 |
+
different_w=False,
|
185 |
+
narrow=1,
|
186 |
+
sft_half=False):
|
187 |
+
|
188 |
+
super(GFPGANv1Clean, self).__init__()
|
189 |
+
self.input_is_latent = input_is_latent
|
190 |
+
self.different_w = different_w
|
191 |
+
self.num_style_feat = num_style_feat
|
192 |
+
|
193 |
+
unet_narrow = narrow * 0.5 # by default, use a half of input channels
|
194 |
+
channels = {
|
195 |
+
'4': int(512 * unet_narrow),
|
196 |
+
'8': int(512 * unet_narrow),
|
197 |
+
'16': int(512 * unet_narrow),
|
198 |
+
'32': int(512 * unet_narrow),
|
199 |
+
'64': int(256 * channel_multiplier * unet_narrow),
|
200 |
+
'128': int(128 * channel_multiplier * unet_narrow),
|
201 |
+
'256': int(64 * channel_multiplier * unet_narrow),
|
202 |
+
'512': int(32 * channel_multiplier * unet_narrow),
|
203 |
+
'1024': int(16 * channel_multiplier * unet_narrow)
|
204 |
+
}
|
205 |
+
|
206 |
+
self.log_size = int(math.log(out_size, 2))
|
207 |
+
first_out_size = 2**(int(math.log(out_size, 2)))
|
208 |
+
|
209 |
+
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
|
210 |
+
|
211 |
+
# downsample
|
212 |
+
in_channels = channels[f'{first_out_size}']
|
213 |
+
self.conv_body_down = nn.ModuleList()
|
214 |
+
for i in range(self.log_size, 2, -1):
|
215 |
+
out_channels = channels[f'{2**(i - 1)}']
|
216 |
+
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
|
217 |
+
in_channels = out_channels
|
218 |
+
|
219 |
+
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
|
220 |
+
|
221 |
+
# upsample
|
222 |
+
in_channels = channels['4']
|
223 |
+
self.conv_body_up = nn.ModuleList()
|
224 |
+
for i in range(3, self.log_size + 1):
|
225 |
+
out_channels = channels[f'{2**i}']
|
226 |
+
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
|
227 |
+
in_channels = out_channels
|
228 |
+
|
229 |
+
# to RGB
|
230 |
+
self.toRGB = nn.ModuleList()
|
231 |
+
for i in range(3, self.log_size + 1):
|
232 |
+
self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
|
233 |
+
|
234 |
+
if different_w:
|
235 |
+
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
|
236 |
+
else:
|
237 |
+
linear_out_channel = num_style_feat
|
238 |
+
|
239 |
+
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
|
240 |
+
|
241 |
+
# the decoder: stylegan2 generator with SFT modulations
|
242 |
+
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
|
243 |
+
out_size=out_size,
|
244 |
+
num_style_feat=num_style_feat,
|
245 |
+
num_mlp=num_mlp,
|
246 |
+
channel_multiplier=channel_multiplier,
|
247 |
+
narrow=narrow,
|
248 |
+
sft_half=sft_half)
|
249 |
+
|
250 |
+
# load pre-trained stylegan2 model if necessary
|
251 |
+
if decoder_load_path:
|
252 |
+
self.stylegan_decoder.load_state_dict(
|
253 |
+
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
|
254 |
+
# fix decoder without updating params
|
255 |
+
if fix_decoder:
|
256 |
+
for _, param in self.stylegan_decoder.named_parameters():
|
257 |
+
param.requires_grad = False
|
258 |
+
|
259 |
+
# for SFT modulations (scale and shift)
|
260 |
+
self.condition_scale = nn.ModuleList()
|
261 |
+
self.condition_shift = nn.ModuleList()
|
262 |
+
for i in range(3, self.log_size + 1):
|
263 |
+
out_channels = channels[f'{2**i}']
|
264 |
+
if sft_half:
|
265 |
+
sft_out_channels = out_channels
|
266 |
+
else:
|
267 |
+
sft_out_channels = out_channels * 2
|
268 |
+
self.condition_scale.append(
|
269 |
+
nn.Sequential(
|
270 |
+
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
271 |
+
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
272 |
+
self.condition_shift.append(
|
273 |
+
nn.Sequential(
|
274 |
+
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
275 |
+
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
276 |
+
|
277 |
+
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
278 |
+
"""Forward function for GFPGANv1Clean.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
x (Tensor): Input images.
|
282 |
+
return_latents (bool): Whether to return style latents. Default: False.
|
283 |
+
return_rgb (bool): Whether return intermediate rgb images. Default: True.
|
284 |
+
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
285 |
+
"""
|
286 |
+
conditions = []
|
287 |
+
unet_skips = []
|
288 |
+
out_rgbs = []
|
289 |
+
|
290 |
+
# encoder
|
291 |
+
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
|
292 |
+
for i in range(self.log_size - 2):
|
293 |
+
feat = self.conv_body_down[i](feat)
|
294 |
+
unet_skips.insert(0, feat)
|
295 |
+
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
|
296 |
+
|
297 |
+
# style code
|
298 |
+
style_code = self.final_linear(feat.view(feat.size(0), -1))
|
299 |
+
if self.different_w:
|
300 |
+
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
|
301 |
+
|
302 |
+
# decode
|
303 |
+
for i in range(self.log_size - 2):
|
304 |
+
# add unet skip
|
305 |
+
feat = feat + unet_skips[i]
|
306 |
+
# ResUpLayer
|
307 |
+
feat = self.conv_body_up[i](feat)
|
308 |
+
# generate scale and shift for SFT layers
|
309 |
+
scale = self.condition_scale[i](feat)
|
310 |
+
conditions.append(scale.clone())
|
311 |
+
shift = self.condition_shift[i](feat)
|
312 |
+
conditions.append(shift.clone())
|
313 |
+
# generate rgb images
|
314 |
+
if return_rgb:
|
315 |
+
out_rgbs.append(self.toRGB[i](feat))
|
316 |
+
|
317 |
+
# decoder
|
318 |
+
image, _ = self.stylegan_decoder([style_code],
|
319 |
+
conditions,
|
320 |
+
return_latents=return_latents,
|
321 |
+
input_is_latent=self.input_is_latent,
|
322 |
+
randomize_noise=randomize_noise)
|
323 |
+
|
324 |
+
return image, out_rgbs
|