culture commited on
Commit
3df44eb
·
1 Parent(s): 21f86f2

Upload gfpgan/archs/gfpganv1_arch.py

Browse files
Files changed (1) hide show
  1. gfpgan/archs/gfpganv1_arch.py +439 -0
gfpgan/archs/gfpganv1_arch.py ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.archs.stylegan2_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
5
+ StyleGAN2Generator)
6
+ from basicsr.ops.fused_act import FusedLeakyReLU
7
+ from basicsr.utils.registry import ARCH_REGISTRY
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class StyleGAN2GeneratorSFT(StyleGAN2Generator):
13
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
14
+
15
+ Args:
16
+ out_size (int): The spatial size of outputs.
17
+ num_style_feat (int): Channel number of style features. Default: 512.
18
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
19
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
20
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
21
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
22
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
23
+ narrow (float): The narrow ratio for channels. Default: 1.
24
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
25
+ """
26
+
27
+ def __init__(self,
28
+ out_size,
29
+ num_style_feat=512,
30
+ num_mlp=8,
31
+ channel_multiplier=2,
32
+ resample_kernel=(1, 3, 3, 1),
33
+ lr_mlp=0.01,
34
+ narrow=1,
35
+ sft_half=False):
36
+ super(StyleGAN2GeneratorSFT, self).__init__(
37
+ out_size,
38
+ num_style_feat=num_style_feat,
39
+ num_mlp=num_mlp,
40
+ channel_multiplier=channel_multiplier,
41
+ resample_kernel=resample_kernel,
42
+ lr_mlp=lr_mlp,
43
+ narrow=narrow)
44
+ self.sft_half = sft_half
45
+
46
+ def forward(self,
47
+ styles,
48
+ conditions,
49
+ input_is_latent=False,
50
+ noise=None,
51
+ randomize_noise=True,
52
+ truncation=1,
53
+ truncation_latent=None,
54
+ inject_index=None,
55
+ return_latents=False):
56
+ """Forward function for StyleGAN2GeneratorSFT.
57
+
58
+ Args:
59
+ styles (list[Tensor]): Sample codes of styles.
60
+ conditions (list[Tensor]): SFT conditions to generators.
61
+ input_is_latent (bool): Whether input is latent style. Default: False.
62
+ noise (Tensor | None): Input noise or None. Default: None.
63
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
64
+ truncation (float): The truncation ratio. Default: 1.
65
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
66
+ inject_index (int | None): The injection index for mixing noise. Default: None.
67
+ return_latents (bool): Whether to return style latents. Default: False.
68
+ """
69
+ # style codes -> latents with Style MLP layer
70
+ if not input_is_latent:
71
+ styles = [self.style_mlp(s) for s in styles]
72
+ # noises
73
+ if noise is None:
74
+ if randomize_noise:
75
+ noise = [None] * self.num_layers # for each style conv layer
76
+ else: # use the stored noise
77
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
78
+ # style truncation
79
+ if truncation < 1:
80
+ style_truncation = []
81
+ for style in styles:
82
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
83
+ styles = style_truncation
84
+ # get style latents with injection
85
+ if len(styles) == 1:
86
+ inject_index = self.num_latent
87
+
88
+ if styles[0].ndim < 3:
89
+ # repeat latent code for all the layers
90
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
91
+ else: # used for encoder with different latent code for each layer
92
+ latent = styles[0]
93
+ elif len(styles) == 2: # mixing noises
94
+ if inject_index is None:
95
+ inject_index = random.randint(1, self.num_latent - 1)
96
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
97
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
98
+ latent = torch.cat([latent1, latent2], 1)
99
+
100
+ # main generation
101
+ out = self.constant_input(latent.shape[0])
102
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
103
+ skip = self.to_rgb1(out, latent[:, 1])
104
+
105
+ i = 1
106
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
107
+ noise[2::2], self.to_rgbs):
108
+ out = conv1(out, latent[:, i], noise=noise1)
109
+
110
+ # the conditions may have fewer levels
111
+ if i < len(conditions):
112
+ # SFT part to combine the conditions
113
+ if self.sft_half: # only apply SFT to half of the channels
114
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
115
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
116
+ out = torch.cat([out_same, out_sft], dim=1)
117
+ else: # apply SFT to all the channels
118
+ out = out * conditions[i - 1] + conditions[i]
119
+
120
+ out = conv2(out, latent[:, i + 1], noise=noise2)
121
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
122
+ i += 2
123
+
124
+ image = skip
125
+
126
+ if return_latents:
127
+ return image, latent
128
+ else:
129
+ return image, None
130
+
131
+
132
+ class ConvUpLayer(nn.Module):
133
+ """Convolutional upsampling layer. It uses bilinear upsampler + Conv.
134
+
135
+ Args:
136
+ in_channels (int): Channel number of the input.
137
+ out_channels (int): Channel number of the output.
138
+ kernel_size (int): Size of the convolving kernel.
139
+ stride (int): Stride of the convolution. Default: 1
140
+ padding (int): Zero-padding added to both sides of the input. Default: 0.
141
+ bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
142
+ bias_init_val (float): Bias initialized value. Default: 0.
143
+ activate (bool): Whether use activateion. Default: True.
144
+ """
145
+
146
+ def __init__(self,
147
+ in_channels,
148
+ out_channels,
149
+ kernel_size,
150
+ stride=1,
151
+ padding=0,
152
+ bias=True,
153
+ bias_init_val=0,
154
+ activate=True):
155
+ super(ConvUpLayer, self).__init__()
156
+ self.in_channels = in_channels
157
+ self.out_channels = out_channels
158
+ self.kernel_size = kernel_size
159
+ self.stride = stride
160
+ self.padding = padding
161
+ # self.scale is used to scale the convolution weights, which is related to the common initializations.
162
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
163
+
164
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
165
+
166
+ if bias and not activate:
167
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
168
+ else:
169
+ self.register_parameter('bias', None)
170
+
171
+ # activation
172
+ if activate:
173
+ if bias:
174
+ self.activation = FusedLeakyReLU(out_channels)
175
+ else:
176
+ self.activation = ScaledLeakyReLU(0.2)
177
+ else:
178
+ self.activation = None
179
+
180
+ def forward(self, x):
181
+ # bilinear upsample
182
+ out = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
183
+ # conv
184
+ out = F.conv2d(
185
+ out,
186
+ self.weight * self.scale,
187
+ bias=self.bias,
188
+ stride=self.stride,
189
+ padding=self.padding,
190
+ )
191
+ # activation
192
+ if self.activation is not None:
193
+ out = self.activation(out)
194
+ return out
195
+
196
+
197
+ class ResUpBlock(nn.Module):
198
+ """Residual block with upsampling.
199
+
200
+ Args:
201
+ in_channels (int): Channel number of the input.
202
+ out_channels (int): Channel number of the output.
203
+ """
204
+
205
+ def __init__(self, in_channels, out_channels):
206
+ super(ResUpBlock, self).__init__()
207
+
208
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
209
+ self.conv2 = ConvUpLayer(in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True)
210
+ self.skip = ConvUpLayer(in_channels, out_channels, 1, bias=False, activate=False)
211
+
212
+ def forward(self, x):
213
+ out = self.conv1(x)
214
+ out = self.conv2(out)
215
+ skip = self.skip(x)
216
+ out = (out + skip) / math.sqrt(2)
217
+ return out
218
+
219
+
220
+ @ARCH_REGISTRY.register()
221
+ class GFPGANv1(nn.Module):
222
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
223
+
224
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
225
+
226
+ Args:
227
+ out_size (int): The spatial size of outputs.
228
+ num_style_feat (int): Channel number of style features. Default: 512.
229
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
230
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
231
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
232
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
233
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
234
+
235
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
236
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
237
+ input_is_latent (bool): Whether input is latent style. Default: False.
238
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
239
+ narrow (float): The narrow ratio for channels. Default: 1.
240
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
241
+ """
242
+
243
+ def __init__(
244
+ self,
245
+ out_size,
246
+ num_style_feat=512,
247
+ channel_multiplier=1,
248
+ resample_kernel=(1, 3, 3, 1),
249
+ decoder_load_path=None,
250
+ fix_decoder=True,
251
+ # for stylegan decoder
252
+ num_mlp=8,
253
+ lr_mlp=0.01,
254
+ input_is_latent=False,
255
+ different_w=False,
256
+ narrow=1,
257
+ sft_half=False):
258
+
259
+ super(GFPGANv1, self).__init__()
260
+ self.input_is_latent = input_is_latent
261
+ self.different_w = different_w
262
+ self.num_style_feat = num_style_feat
263
+
264
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
265
+ channels = {
266
+ '4': int(512 * unet_narrow),
267
+ '8': int(512 * unet_narrow),
268
+ '16': int(512 * unet_narrow),
269
+ '32': int(512 * unet_narrow),
270
+ '64': int(256 * channel_multiplier * unet_narrow),
271
+ '128': int(128 * channel_multiplier * unet_narrow),
272
+ '256': int(64 * channel_multiplier * unet_narrow),
273
+ '512': int(32 * channel_multiplier * unet_narrow),
274
+ '1024': int(16 * channel_multiplier * unet_narrow)
275
+ }
276
+
277
+ self.log_size = int(math.log(out_size, 2))
278
+ first_out_size = 2**(int(math.log(out_size, 2)))
279
+
280
+ self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
281
+
282
+ # downsample
283
+ in_channels = channels[f'{first_out_size}']
284
+ self.conv_body_down = nn.ModuleList()
285
+ for i in range(self.log_size, 2, -1):
286
+ out_channels = channels[f'{2**(i - 1)}']
287
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, resample_kernel))
288
+ in_channels = out_channels
289
+
290
+ self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
291
+
292
+ # upsample
293
+ in_channels = channels['4']
294
+ self.conv_body_up = nn.ModuleList()
295
+ for i in range(3, self.log_size + 1):
296
+ out_channels = channels[f'{2**i}']
297
+ self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
298
+ in_channels = out_channels
299
+
300
+ # to RGB
301
+ self.toRGB = nn.ModuleList()
302
+ for i in range(3, self.log_size + 1):
303
+ self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
304
+
305
+ if different_w:
306
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
307
+ else:
308
+ linear_out_channel = num_style_feat
309
+
310
+ self.final_linear = EqualLinear(
311
+ channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
312
+
313
+ # the decoder: stylegan2 generator with SFT modulations
314
+ self.stylegan_decoder = StyleGAN2GeneratorSFT(
315
+ out_size=out_size,
316
+ num_style_feat=num_style_feat,
317
+ num_mlp=num_mlp,
318
+ channel_multiplier=channel_multiplier,
319
+ resample_kernel=resample_kernel,
320
+ lr_mlp=lr_mlp,
321
+ narrow=narrow,
322
+ sft_half=sft_half)
323
+
324
+ # load pre-trained stylegan2 model if necessary
325
+ if decoder_load_path:
326
+ self.stylegan_decoder.load_state_dict(
327
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
328
+ # fix decoder without updating params
329
+ if fix_decoder:
330
+ for _, param in self.stylegan_decoder.named_parameters():
331
+ param.requires_grad = False
332
+
333
+ # for SFT modulations (scale and shift)
334
+ self.condition_scale = nn.ModuleList()
335
+ self.condition_shift = nn.ModuleList()
336
+ for i in range(3, self.log_size + 1):
337
+ out_channels = channels[f'{2**i}']
338
+ if sft_half:
339
+ sft_out_channels = out_channels
340
+ else:
341
+ sft_out_channels = out_channels * 2
342
+ self.condition_scale.append(
343
+ nn.Sequential(
344
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
345
+ ScaledLeakyReLU(0.2),
346
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
347
+ self.condition_shift.append(
348
+ nn.Sequential(
349
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
350
+ ScaledLeakyReLU(0.2),
351
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
352
+
353
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
354
+ """Forward function for GFPGANv1.
355
+
356
+ Args:
357
+ x (Tensor): Input images.
358
+ return_latents (bool): Whether to return style latents. Default: False.
359
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
360
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
361
+ """
362
+ conditions = []
363
+ unet_skips = []
364
+ out_rgbs = []
365
+
366
+ # encoder
367
+ feat = self.conv_body_first(x)
368
+ for i in range(self.log_size - 2):
369
+ feat = self.conv_body_down[i](feat)
370
+ unet_skips.insert(0, feat)
371
+
372
+ feat = self.final_conv(feat)
373
+
374
+ # style code
375
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
376
+ if self.different_w:
377
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
378
+
379
+ # decode
380
+ for i in range(self.log_size - 2):
381
+ # add unet skip
382
+ feat = feat + unet_skips[i]
383
+ # ResUpLayer
384
+ feat = self.conv_body_up[i](feat)
385
+ # generate scale and shift for SFT layers
386
+ scale = self.condition_scale[i](feat)
387
+ conditions.append(scale.clone())
388
+ shift = self.condition_shift[i](feat)
389
+ conditions.append(shift.clone())
390
+ # generate rgb images
391
+ if return_rgb:
392
+ out_rgbs.append(self.toRGB[i](feat))
393
+
394
+ # decoder
395
+ image, _ = self.stylegan_decoder([style_code],
396
+ conditions,
397
+ return_latents=return_latents,
398
+ input_is_latent=self.input_is_latent,
399
+ randomize_noise=randomize_noise)
400
+
401
+ return image, out_rgbs
402
+
403
+
404
+ @ARCH_REGISTRY.register()
405
+ class FacialComponentDiscriminator(nn.Module):
406
+ """Facial component (eyes, mouth, noise) discriminator used in GFPGAN.
407
+ """
408
+
409
+ def __init__(self):
410
+ super(FacialComponentDiscriminator, self).__init__()
411
+ # It now uses a VGG-style architectrue with fixed model size
412
+ self.conv1 = ConvLayer(3, 64, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
413
+ self.conv2 = ConvLayer(64, 128, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
414
+ self.conv3 = ConvLayer(128, 128, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
415
+ self.conv4 = ConvLayer(128, 256, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
416
+ self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
417
+ self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
418
+
419
+ def forward(self, x, return_feats=False):
420
+ """Forward function for FacialComponentDiscriminator.
421
+
422
+ Args:
423
+ x (Tensor): Input images.
424
+ return_feats (bool): Whether to return intermediate features. Default: False.
425
+ """
426
+ feat = self.conv1(x)
427
+ feat = self.conv3(self.conv2(feat))
428
+ rlt_feats = []
429
+ if return_feats:
430
+ rlt_feats.append(feat.clone())
431
+ feat = self.conv5(self.conv4(feat))
432
+ if return_feats:
433
+ rlt_feats.append(feat.clone())
434
+ out = self.final_conv(feat)
435
+
436
+ if return_feats:
437
+ return out, rlt_feats
438
+ else:
439
+ return out, None