Spaces:
No application file
No application file
culture
commited on
Commit
·
818ce2d
1
Parent(s):
39f1cda
Upload gfpgan/archs/stylegan2_clean_arch.py
Browse files
gfpgan/archs/stylegan2_clean_arch.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from basicsr.archs.arch_util import default_init_weights
|
5 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
|
10 |
+
class NormStyleCode(nn.Module):
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
"""Normalize the style codes.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
x (Tensor): Style codes with shape (b, c).
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
Tensor: Normalized tensor.
|
20 |
+
"""
|
21 |
+
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
22 |
+
|
23 |
+
|
24 |
+
class ModulatedConv2d(nn.Module):
|
25 |
+
"""Modulated Conv2d used in StyleGAN2.
|
26 |
+
|
27 |
+
There is no bias in ModulatedConv2d.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
in_channels (int): Channel number of the input.
|
31 |
+
out_channels (int): Channel number of the output.
|
32 |
+
kernel_size (int): Size of the convolving kernel.
|
33 |
+
num_style_feat (int): Channel number of style features.
|
34 |
+
demodulate (bool): Whether to demodulate in the conv layer. Default: True.
|
35 |
+
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
36 |
+
eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self,
|
40 |
+
in_channels,
|
41 |
+
out_channels,
|
42 |
+
kernel_size,
|
43 |
+
num_style_feat,
|
44 |
+
demodulate=True,
|
45 |
+
sample_mode=None,
|
46 |
+
eps=1e-8):
|
47 |
+
super(ModulatedConv2d, self).__init__()
|
48 |
+
self.in_channels = in_channels
|
49 |
+
self.out_channels = out_channels
|
50 |
+
self.kernel_size = kernel_size
|
51 |
+
self.demodulate = demodulate
|
52 |
+
self.sample_mode = sample_mode
|
53 |
+
self.eps = eps
|
54 |
+
|
55 |
+
# modulation inside each modulated conv
|
56 |
+
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
57 |
+
# initialization
|
58 |
+
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
59 |
+
|
60 |
+
self.weight = nn.Parameter(
|
61 |
+
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
62 |
+
math.sqrt(in_channels * kernel_size**2))
|
63 |
+
self.padding = kernel_size // 2
|
64 |
+
|
65 |
+
def forward(self, x, style):
|
66 |
+
"""Forward function.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
x (Tensor): Tensor with shape (b, c, h, w).
|
70 |
+
style (Tensor): Tensor with shape (b, num_style_feat).
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
Tensor: Modulated tensor after convolution.
|
74 |
+
"""
|
75 |
+
b, c, h, w = x.shape # c = c_in
|
76 |
+
# weight modulation
|
77 |
+
style = self.modulation(style).view(b, 1, c, 1, 1)
|
78 |
+
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
79 |
+
weight = self.weight * style # (b, c_out, c_in, k, k)
|
80 |
+
|
81 |
+
if self.demodulate:
|
82 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
83 |
+
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
84 |
+
|
85 |
+
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
86 |
+
|
87 |
+
# upsample or downsample if necessary
|
88 |
+
if self.sample_mode == 'upsample':
|
89 |
+
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
90 |
+
elif self.sample_mode == 'downsample':
|
91 |
+
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
92 |
+
|
93 |
+
b, c, h, w = x.shape
|
94 |
+
x = x.view(1, b * c, h, w)
|
95 |
+
# weight: (b*c_out, c_in, k, k), groups=b
|
96 |
+
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
97 |
+
out = out.view(b, self.out_channels, *out.shape[2:4])
|
98 |
+
|
99 |
+
return out
|
100 |
+
|
101 |
+
def __repr__(self):
|
102 |
+
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
103 |
+
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
104 |
+
|
105 |
+
|
106 |
+
class StyleConv(nn.Module):
|
107 |
+
"""Style conv used in StyleGAN2.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
in_channels (int): Channel number of the input.
|
111 |
+
out_channels (int): Channel number of the output.
|
112 |
+
kernel_size (int): Size of the convolving kernel.
|
113 |
+
num_style_feat (int): Channel number of style features.
|
114 |
+
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
115 |
+
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
116 |
+
"""
|
117 |
+
|
118 |
+
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
119 |
+
super(StyleConv, self).__init__()
|
120 |
+
self.modulated_conv = ModulatedConv2d(
|
121 |
+
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
122 |
+
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
123 |
+
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
124 |
+
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
125 |
+
|
126 |
+
def forward(self, x, style, noise=None):
|
127 |
+
# modulate
|
128 |
+
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
129 |
+
# noise injection
|
130 |
+
if noise is None:
|
131 |
+
b, _, h, w = out.shape
|
132 |
+
noise = out.new_empty(b, 1, h, w).normal_()
|
133 |
+
out = out + self.weight * noise
|
134 |
+
# add bias
|
135 |
+
out = out + self.bias
|
136 |
+
# activation
|
137 |
+
out = self.activate(out)
|
138 |
+
return out
|
139 |
+
|
140 |
+
|
141 |
+
class ToRGB(nn.Module):
|
142 |
+
"""To RGB (image space) from features.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
in_channels (int): Channel number of input.
|
146 |
+
num_style_feat (int): Channel number of style features.
|
147 |
+
upsample (bool): Whether to upsample. Default: True.
|
148 |
+
"""
|
149 |
+
|
150 |
+
def __init__(self, in_channels, num_style_feat, upsample=True):
|
151 |
+
super(ToRGB, self).__init__()
|
152 |
+
self.upsample = upsample
|
153 |
+
self.modulated_conv = ModulatedConv2d(
|
154 |
+
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
155 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
156 |
+
|
157 |
+
def forward(self, x, style, skip=None):
|
158 |
+
"""Forward function.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
x (Tensor): Feature tensor with shape (b, c, h, w).
|
162 |
+
style (Tensor): Tensor with shape (b, num_style_feat).
|
163 |
+
skip (Tensor): Base/skip tensor. Default: None.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
Tensor: RGB images.
|
167 |
+
"""
|
168 |
+
out = self.modulated_conv(x, style)
|
169 |
+
out = out + self.bias
|
170 |
+
if skip is not None:
|
171 |
+
if self.upsample:
|
172 |
+
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
173 |
+
out = out + skip
|
174 |
+
return out
|
175 |
+
|
176 |
+
|
177 |
+
class ConstantInput(nn.Module):
|
178 |
+
"""Constant input.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
num_channel (int): Channel number of constant input.
|
182 |
+
size (int): Spatial size of constant input.
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, num_channel, size):
|
186 |
+
super(ConstantInput, self).__init__()
|
187 |
+
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
188 |
+
|
189 |
+
def forward(self, batch):
|
190 |
+
out = self.weight.repeat(batch, 1, 1, 1)
|
191 |
+
return out
|
192 |
+
|
193 |
+
|
194 |
+
@ARCH_REGISTRY.register()
|
195 |
+
class StyleGAN2GeneratorClean(nn.Module):
|
196 |
+
"""Clean version of StyleGAN2 Generator.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
out_size (int): The spatial size of outputs.
|
200 |
+
num_style_feat (int): Channel number of style features. Default: 512.
|
201 |
+
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
202 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
203 |
+
narrow (float): Narrow ratio for channels. Default: 1.0.
|
204 |
+
"""
|
205 |
+
|
206 |
+
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1):
|
207 |
+
super(StyleGAN2GeneratorClean, self).__init__()
|
208 |
+
# Style MLP layers
|
209 |
+
self.num_style_feat = num_style_feat
|
210 |
+
style_mlp_layers = [NormStyleCode()]
|
211 |
+
for i in range(num_mlp):
|
212 |
+
style_mlp_layers.extend(
|
213 |
+
[nn.Linear(num_style_feat, num_style_feat, bias=True),
|
214 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True)])
|
215 |
+
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
216 |
+
# initialization
|
217 |
+
default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu')
|
218 |
+
|
219 |
+
# channel list
|
220 |
+
channels = {
|
221 |
+
'4': int(512 * narrow),
|
222 |
+
'8': int(512 * narrow),
|
223 |
+
'16': int(512 * narrow),
|
224 |
+
'32': int(512 * narrow),
|
225 |
+
'64': int(256 * channel_multiplier * narrow),
|
226 |
+
'128': int(128 * channel_multiplier * narrow),
|
227 |
+
'256': int(64 * channel_multiplier * narrow),
|
228 |
+
'512': int(32 * channel_multiplier * narrow),
|
229 |
+
'1024': int(16 * channel_multiplier * narrow)
|
230 |
+
}
|
231 |
+
self.channels = channels
|
232 |
+
|
233 |
+
self.constant_input = ConstantInput(channels['4'], size=4)
|
234 |
+
self.style_conv1 = StyleConv(
|
235 |
+
channels['4'],
|
236 |
+
channels['4'],
|
237 |
+
kernel_size=3,
|
238 |
+
num_style_feat=num_style_feat,
|
239 |
+
demodulate=True,
|
240 |
+
sample_mode=None)
|
241 |
+
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False)
|
242 |
+
|
243 |
+
self.log_size = int(math.log(out_size, 2))
|
244 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
245 |
+
self.num_latent = self.log_size * 2 - 2
|
246 |
+
|
247 |
+
self.style_convs = nn.ModuleList()
|
248 |
+
self.to_rgbs = nn.ModuleList()
|
249 |
+
self.noises = nn.Module()
|
250 |
+
|
251 |
+
in_channels = channels['4']
|
252 |
+
# noise
|
253 |
+
for layer_idx in range(self.num_layers):
|
254 |
+
resolution = 2**((layer_idx + 5) // 2)
|
255 |
+
shape = [1, 1, resolution, resolution]
|
256 |
+
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
|
257 |
+
# style convs and to_rgbs
|
258 |
+
for i in range(3, self.log_size + 1):
|
259 |
+
out_channels = channels[f'{2**i}']
|
260 |
+
self.style_convs.append(
|
261 |
+
StyleConv(
|
262 |
+
in_channels,
|
263 |
+
out_channels,
|
264 |
+
kernel_size=3,
|
265 |
+
num_style_feat=num_style_feat,
|
266 |
+
demodulate=True,
|
267 |
+
sample_mode='upsample'))
|
268 |
+
self.style_convs.append(
|
269 |
+
StyleConv(
|
270 |
+
out_channels,
|
271 |
+
out_channels,
|
272 |
+
kernel_size=3,
|
273 |
+
num_style_feat=num_style_feat,
|
274 |
+
demodulate=True,
|
275 |
+
sample_mode=None))
|
276 |
+
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
|
277 |
+
in_channels = out_channels
|
278 |
+
|
279 |
+
def make_noise(self):
|
280 |
+
"""Make noise for noise injection."""
|
281 |
+
device = self.constant_input.weight.device
|
282 |
+
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
283 |
+
|
284 |
+
for i in range(3, self.log_size + 1):
|
285 |
+
for _ in range(2):
|
286 |
+
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
287 |
+
|
288 |
+
return noises
|
289 |
+
|
290 |
+
def get_latent(self, x):
|
291 |
+
return self.style_mlp(x)
|
292 |
+
|
293 |
+
def mean_latent(self, num_latent):
|
294 |
+
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
|
295 |
+
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
296 |
+
return latent
|
297 |
+
|
298 |
+
def forward(self,
|
299 |
+
styles,
|
300 |
+
input_is_latent=False,
|
301 |
+
noise=None,
|
302 |
+
randomize_noise=True,
|
303 |
+
truncation=1,
|
304 |
+
truncation_latent=None,
|
305 |
+
inject_index=None,
|
306 |
+
return_latents=False):
|
307 |
+
"""Forward function for StyleGAN2GeneratorClean.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
styles (list[Tensor]): Sample codes of styles.
|
311 |
+
input_is_latent (bool): Whether input is latent style. Default: False.
|
312 |
+
noise (Tensor | None): Input noise or None. Default: None.
|
313 |
+
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
314 |
+
truncation (float): The truncation ratio. Default: 1.
|
315 |
+
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
316 |
+
inject_index (int | None): The injection index for mixing noise. Default: None.
|
317 |
+
return_latents (bool): Whether to return style latents. Default: False.
|
318 |
+
"""
|
319 |
+
# style codes -> latents with Style MLP layer
|
320 |
+
if not input_is_latent:
|
321 |
+
styles = [self.style_mlp(s) for s in styles]
|
322 |
+
# noises
|
323 |
+
if noise is None:
|
324 |
+
if randomize_noise:
|
325 |
+
noise = [None] * self.num_layers # for each style conv layer
|
326 |
+
else: # use the stored noise
|
327 |
+
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
328 |
+
# style truncation
|
329 |
+
if truncation < 1:
|
330 |
+
style_truncation = []
|
331 |
+
for style in styles:
|
332 |
+
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
333 |
+
styles = style_truncation
|
334 |
+
# get style latents with injection
|
335 |
+
if len(styles) == 1:
|
336 |
+
inject_index = self.num_latent
|
337 |
+
|
338 |
+
if styles[0].ndim < 3:
|
339 |
+
# repeat latent code for all the layers
|
340 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
341 |
+
else: # used for encoder with different latent code for each layer
|
342 |
+
latent = styles[0]
|
343 |
+
elif len(styles) == 2: # mixing noises
|
344 |
+
if inject_index is None:
|
345 |
+
inject_index = random.randint(1, self.num_latent - 1)
|
346 |
+
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
347 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
348 |
+
latent = torch.cat([latent1, latent2], 1)
|
349 |
+
|
350 |
+
# main generation
|
351 |
+
out = self.constant_input(latent.shape[0])
|
352 |
+
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
353 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
354 |
+
|
355 |
+
i = 1
|
356 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
357 |
+
noise[2::2], self.to_rgbs):
|
358 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
359 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
360 |
+
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
361 |
+
i += 2
|
362 |
+
|
363 |
+
image = skip
|
364 |
+
|
365 |
+
if return_latents:
|
366 |
+
return image, latent
|
367 |
+
else:
|
368 |
+
return image, None
|