Spaces:
Sleeping
Sleeping
File size: 5,763 Bytes
cc9af23 2360fe8 cc9af23 2360fe8 cc9af23 2360fe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import torch
from ultralytics import YOLO
import cv2
import numpy as np
from math import atan2, cos, sin, sqrt, pi
# Images
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/cefd9731-c57c-428b-b401-fd54a8bd0a95', 'highway.jpg')
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/acbad76a-33f9-4028-b012-4ece5998c272', 'highway1.jpg')
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/7fa95f52-3c8b-4ea0-8bca-7374792a4c55', 'small-vehicles1.jpeg')
def drawAxis(img, p_, q_, color, scale):
p = list(p_)
q = list(q_)
## [visualization1]
angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
# Here we lengthen the arrow by a factor of scale
q[0] = p[0] - scale * hypotenuse * cos(angle)
q[1] = p[1] - scale * hypotenuse * sin(angle)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
# create the arrow hooks
p[0] = q[0] + 9 * cos(angle + pi / 4)
p[1] = q[1] + 9 * sin(angle + pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
p[0] = q[0] + 9 * cos(angle - pi / 4)
p[1] = q[1] + 9 * sin(angle - pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
## [visualization1]
def getOrientation(pts, img):
## [pca]
# Construct a buffer used by the pca analysis
sz = len(pts)
data_pts = np.empty((sz, 2), dtype=np.float64)
for i in range(data_pts.shape[0]):
data_pts[i,0] = pts[i,0,0]
data_pts[i,1] = pts[i,0,1]
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
# Store the center of the object
cntr = (int(mean[0,0]), int(mean[0,1]))
## [pca]
## [visualization]
# Draw the principal components
cv2.circle(img, cntr, 3, (255, 0, 255), 10)
p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
drawAxis(img, cntr, p1, (255, 255, 0), 1)
drawAxis(img, cntr, p2, (0, 0, 255), 3)
angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
## [visualization]
angle_deg = -(int(np.rad2deg(angle))-180) % 180
# Label with the rotation angle
label = " Rotation Angle: " + str(int(np.rad2deg(angle))) + " degrees"
textbox = cv2.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1)
cv2.putText(img, label, (cntr[0], cntr[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
return angle_deg
def yolov8_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.conf = conf_threshold
model.iou = iou_threshold
#read image
image = cv2.imread(image)
#resize image (optional)
img_res_toshow = cv2.resize(image, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)
height=img_res_toshow.shape[0]
width=img_res_toshow.shape[1]
dim=(width,height)
results = model.predict(image, imgsz=image_size, return_outputs=True)
#obtain BW image
bw=(results[0].masks.masks[0].cpu().numpy() * 255).astype("uint8")
#BW image with same dimention of initial image
bw=cv2.resize(bw, dim, interpolation = cv2.INTER_AREA)
img=img_res_toshow
contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for i, c in enumerate(contours):
# Calculate the area of each contour
area = cv2.contourArea(c)
# Ignore contours that are too small or too large
if area < 3700 or 100000 < area:
continue
# Draw each contour only for visualisation purposes
cv2.drawContours(img, contours, i, (0, 0, 255), 2)
# Find the orientation of each shape
print(getOrientation(c, img))
return img
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "kadirnar/yolov8x-v8.0", "kadirnar/yolov8x6-v8.0"],
default="kadirnar/yolov8m-v8.0", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
examples = [['highway.jpg', 'kadirnar/yolov8m-v8.0', 640, 0.25, 0.45], ['highway1.jpg', 'kadirnar/yolov8l-v8.0', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'kadirnar/yolov8x-v8.0', 1280, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True) |