Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii Inc. All rights reserved. | |
import cv2 | |
import numpy as np | |
COCO_CLASSES = ("red", "green", "yellow", "empty", "straight", "left", "right", "other") | |
__all__ = ["vis"] | |
def is_nearby(box1, box2, threshold=40): | |
# Compute the centroid of both boxes | |
cx1 = (box1[0] + box1[2]) / 2 | |
cy1 = (box1[1] + box1[3]) / 2 | |
cx2 = (box2[0] + box2[2]) / 2 | |
cy2 = (box2[1] + box2[3]) / 2 | |
# Compute the distance between centroids | |
distance = ((cx1 - cx2) ** 2 + (cy1 - cy2) ** 2) ** 0.5 | |
return distance < threshold | |
def vis(img, boxes, scores, cls_ids, conf, class_names): | |
arrow_offsets = {} | |
seen_boxes = [] | |
for i in range(len(boxes)): | |
box = boxes[i] | |
cls_id = int(cls_ids[i]) | |
score = scores[i] | |
if score < conf: | |
continue | |
x0, y0, x1, y1 = map(int, box) | |
color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist() | |
text = "{}:{:.1f}%".format(class_names[cls_id], score * 100) | |
txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255) | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
txt_size = cv2.getTextSize(text, font, 0.4, 1)[0] | |
if cls_id < 4: | |
overlay = img.copy() | |
cv2.rectangle(overlay, (x0, y0), (x1, y1), color, -1) # -1 fills the rectangle | |
alpha = 0.4 # Transparency factor. | |
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img) | |
cv2.rectangle(img, (x0, y0), (x1, y1), color, 2) | |
txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist() | |
cv2.rectangle( | |
img, | |
(x0, y0 + 1), | |
(x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), | |
txt_bk_color, | |
-1, | |
) | |
cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1) | |
else: | |
nearby_box_idx = None | |
for idx, seen_box in enumerate(seen_boxes): | |
if is_nearby(seen_box, box): | |
nearby_box_idx = idx | |
break | |
offset = 0 | |
if nearby_box_idx is not None: | |
arrow_offsets[nearby_box_idx] = arrow_offsets.get(nearby_box_idx, 0) + 1 | |
offset = arrow_offsets[nearby_box_idx] * (txt_size[1] + 5) | |
else: | |
seen_boxes.append(box) | |
txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist() | |
cv2.rectangle( | |
img, | |
(x0, y1 + 1 + offset), | |
(x0 + txt_size[0] + 1, y1 + int(1.5 * txt_size[1]) + offset), | |
txt_bk_color, | |
-1, | |
) | |
cv2.putText( | |
img, text, (x0, y1 + txt_size[1] + offset), font, 0.4, txt_color, thickness=1 | |
) | |
return img | |
_COLORS = np.array( | |
[ # B , G , R | |
0.000, 0.000, 1.000, | |
1.000, 0.300, 0.000, | |
0.000, 1.000, 1.000, | |
0.494, 0.184, 0.556, | |
0.466, 0.674, 0.188, | |
0.301, 0.745, 0.933, | |
0.635, 0.078, 0.184, | |
0.300, 0.300, 0.300, | |
0.600, 0.600, 0.600, | |
1.000, 0.000, 0.000, | |
1.000, 0.500, 0.000, | |
0.749, 0.749, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.333, 0.333, 0.000, | |
0.333, 0.667, 0.000, | |
0.333, 1.000, 0.000, | |
0.667, 0.333, 0.000, | |
0.667, 0.667, 0.000, | |
0.667, 1.000, 0.000, | |
1.000, 0.333, 0.000, | |
1.000, 0.667, 0.000, | |
1.000, 1.000, 0.000, | |
0.000, 0.333, 0.500, | |
0.000, 0.667, 0.500, | |
0.000, 1.000, 0.500, | |
0.333, 0.000, 0.500, | |
0.333, 0.333, 0.500, | |
0.333, 0.667, 0.500, | |
0.333, 1.000, 0.500, | |
0.667, 0.000, 0.500, | |
0.667, 0.333, 0.500, | |
0.667, 0.667, 0.500, | |
0.667, 1.000, 0.500, | |
1.000, 0.000, 0.500, | |
1.000, 0.333, 0.500, | |
1.000, 0.667, 0.500, | |
1.000, 1.000, 0.500, | |
0.000, 0.333, 1.000, | |
0.000, 0.667, 1.000, | |
0.000, 1.000, 1.000, | |
0.333, 0.000, 1.000, | |
0.333, 0.333, 1.000, | |
0.333, 0.667, 1.000, | |
0.333, 1.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.667, 0.333, 1.000, | |
0.667, 0.667, 1.000, | |
0.667, 1.000, 1.000, | |
1.000, 0.000, 1.000, | |
1.000, 0.333, 1.000, | |
1.000, 0.667, 1.000, | |
0.333, 0.000, 0.000, | |
0.500, 0.000, 0.000, | |
0.667, 0.000, 0.000, | |
0.833, 0.000, 0.000, | |
1.000, 0.000, 0.000, | |
0.000, 0.167, 0.000, | |
0.000, 0.333, 0.000, | |
0.000, 0.500, 0.000, | |
0.000, 0.667, 0.000, | |
0.000, 0.833, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 0.167, | |
0.000, 0.000, 0.333, | |
0.000, 0.000, 0.500, | |
0.000, 0.000, 0.667, | |
0.000, 0.000, 0.833, | |
0.000, 0.000, 1.000, | |
0.000, 0.000, 0.000, | |
0.143, 0.143, 0.143, | |
0.286, 0.286, 0.286, | |
0.429, 0.429, 0.429, | |
0.571, 0.571, 0.571, | |
0.714, 0.714, 0.714, | |
0.857, 0.857, 0.857, | |
0.000, 0.447, 0.741, | |
0.314, 0.717, 0.741, | |
0.50, 0.5, 0 | |
] | |
).astype(np.float32).reshape(-1, 3) | |