Spaces:
Runtime error
Runtime error
# Import the required libraries | |
import nltk | |
import spacy | |
import tensorflow as tf | |
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
# Load the language model | |
nlp = spacy.load('en_core_web_sm') | |
# Define the neural network architecture | |
input_text = Input(shape=(None,)) | |
embedding_layer = Embedding(input_dim=num_words, output_dim=embedding_dim)(input_text) | |
lstm_layer = LSTM(units=lstm_units)(embedding_layer) | |
dropout_layer = Dropout(rate=dropout_rate)(lstm_layer) | |
output_layer = Dense(units=num_classes, activation='softmax')(dropout_layer) | |
# Compile the model | |
model = Model(inputs=input_text, outputs=output_layer) | |
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learning_rate), metrics=['accuracy']) | |
# Train the model | |
model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=num_epochs) | |
# Define the function for providing feedback and corrections | |
def provide_feedback(code): | |
# Use NLP to analyze code syntax and structure | |
doc = nlp(code) | |
# Use machine learning to classify code errors and suggest corrections | |
# ... | |
# Use deep learning to generate new code that fixes errors | |
# ... | |
# Return the corrected code and feedback to the user | |
return corrected_code, feedback_message | |