Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
MODEL_NAME = "ubiodee/Cardano_plutus" # Your fine-tuned model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
# Function to generate response from the model | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=512) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(label="Enter your prompt"), | |
outputs=gr.Textbox(label="Model Response"), | |
title="Cardano Plutus AI", | |
description="Type in your question or prompt related to Cardano Plutus and get a response from the AI model.", | |
theme="default" | |
) | |
# Launch app | |
iface.launch() | |