File size: 4,630 Bytes
8395863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import logging
import math
from os.path import join as pjoin
import torch
import torch.nn as nn
import numpy as np
from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
from torch.nn.modules.utils import _pair
from scipy import ndimage
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu}
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
self.num_attention_heads = config["num_heads"] # 12
self.attention_head_size = int(config['hidden_size'] / self.num_attention_heads) # 42
self.all_head_size = self.num_attention_heads * self.attention_head_size # 12*42=504
self.query = Linear(config['hidden_size'], self.all_head_size) # (512, 504)
self.key = Linear(config['hidden_size'], self.all_head_size)
self.value = Linear(config['hidden_size'], self.all_head_size)
# self.out = Linear(config['hidden_size'], config['hidden_size'])
self.out = Linear(self.all_head_size, config['hidden_size'])
self.attn_dropout = Dropout(config["attention_dropout_rate"])
self.proj_dropout = Dropout(config["attention_dropout_rate"])
self.softmax = Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_probs = self.softmax(attention_scores)
attention_probs = self.attn_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
attention_output = self.out(context_layer)
attention_output = self.proj_dropout(attention_output)
return attention_output
class Mlp(nn.Module):
def __init__(self, config):
super(Mlp, self).__init__()
self.fc1 = Linear(config['hidden_size'], config["mlp_dim"])
self.fc2 = Linear(config["mlp_dim"], config['hidden_size'])
self.act_fn = ACT2FN["gelu"]
self.dropout = Dropout(config["dropout_rate"])
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super(Block, self).__init__()
self.flag = config['num_heads']
self.hidden_size = config['hidden_size']
self.ffn_norm = LayerNorm(config['hidden_size'], eps=1e-6)
self.ffn = Mlp(config)
self.attn = Attention(config)
self.attention_norm = LayerNorm(config['hidden_size'], eps=1e-6)
def forward(self, x):
h = x
x = self.attention_norm(x)
x = self.attn(x)
x = x + h
h = x
x = self.ffn_norm(x)
x = self.ffn(x)
x = x + h
return x
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
self.layer = nn.ModuleList()
self.encoder_norm = LayerNorm(config['hidden_size'], eps=1e-6)
for _ in range(config["num_layers"]):
layer = Block(config)
self.layer.append(copy.deepcopy(layer))
def forward(self, hidden_states):
for layer_block in self.layer:
hidden_states = layer_block(hidden_states)
encoded = self.encoder_norm(hidden_states)
return encoded
|