VisAt / TranSalNet_Res.py
Tanzeer's picture
Upload 15 files
8395863
import os
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from skimage import io, transform
from PIL import Image
import torch.nn as nn
from torchvision import transforms, utils, models
import torch.nn.functional as F
import utils.resnet as resnet
from utils.TransformerEncoder import Encoder
cfg1 = {
"hidden_size" : 768,
"mlp_dim" : 768*4,
"num_heads" : 12,
"num_layers" : 2,
"attention_dropout_rate" : 0,
"dropout_rate" : 0.0,
}
cfg2 = {
"hidden_size" : 768,
"mlp_dim" : 768*4,
"num_heads" : 12,
"num_layers" : 2,
"attention_dropout_rate" : 0,
"dropout_rate" : 0.0,
}
cfg3 = {
"hidden_size" : 512,
"mlp_dim" : 512*4,
"num_heads" : 8,
"num_layers" : 2,
"attention_dropout_rate" : 0,
"dropout_rate" : 0.0,
}
class TranSalNet(nn.Module):
def __init__(self):
super(TranSalNet, self).__init__()
self.encoder = _Encoder()
self.decoder = _Decoder()
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class _Encoder(nn.Module):
def __init__(self):
super(_Encoder, self).__init__()
base_model = resnet.resnet50(pretrained=True)
base_layers = list(base_model.children())[:8]
self.encoder = nn.ModuleList(base_layers).eval()
def forward(self, x):
outputs = []
for ii,layer in enumerate(self.encoder):
x = layer(x)
if ii in {5,6,7}:
outputs.append(x)
return outputs
class _Decoder(nn.Module):
def __init__(self):
super(_Decoder, self).__init__()
self.conv1 = nn.Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv2 = nn.Conv2d(768, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv3 = nn.Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv4 = nn.Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv5 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv6 = nn.Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv7 = nn.Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.batchnorm1 = nn.BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.batchnorm2 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.batchnorm3 = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.batchnorm4 = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.batchnorm5 = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.batchnorm6 = nn.BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.TransEncoder1 = TransEncoder(in_channels=2048, spatial_size=9*12, cfg=cfg1)
self.TransEncoder2 = TransEncoder(in_channels=1024, spatial_size=18*24, cfg=cfg2)
self.TransEncoder3 = TransEncoder(in_channels=512, spatial_size=36*48, cfg=cfg3)
self.add = torch.add
self.relu = nn.ReLU(True)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x3, x4, x5 = x
x5 = self.TransEncoder1(x5)
x5 = self.conv1(x5)
x5 = self.batchnorm1(x5)
x5 = self.relu(x5)
x5 = self.upsample(x5)
x4_a = self.TransEncoder2(x4)
x4 = x5 * x4_a
x4 = self.relu(x4)
x4 = self.conv2(x4)
x4 = self.batchnorm2(x4)
x4 = self.relu(x4)
x4 = self.upsample(x4)
x3_a = self.TransEncoder3(x3)
x3 = x4 * x3_a
x3 = self.relu(x3)
x3 = self.conv3(x3)
x3 = self.batchnorm3(x3)
x3 = self.relu(x3)
x3 = self.upsample(x3)
x2 = self.conv4(x3)
x2 = self.batchnorm4(x2)
x2 = self.relu(x2)
x2 = self.upsample(x2)
x2 = self.conv5(x2)
x2 = self.batchnorm5(x2)
x2 = self.relu(x2)
x1 = self.upsample(x2)
x1 = self.conv6(x1)
x1 = self.batchnorm6(x1)
x1 = self.relu(x1)
x1 = self.conv7(x1)
x = self.sigmoid(x1)
return x
class TransEncoder(nn.Module):
def __init__(self, in_channels, spatial_size, cfg):
super(TransEncoder, self).__init__()
self.patch_embeddings = nn.Conv2d(in_channels=in_channels,
out_channels=cfg['hidden_size'],
kernel_size=1,
stride=1)
self.position_embeddings = nn.Parameter(torch.zeros(1, spatial_size, cfg['hidden_size']))
self.transformer_encoder = Encoder(cfg)
def forward(self, x):
a, b = x.shape[2], x.shape[3]
x = self.patch_embeddings(x)
x = x.flatten(2)
x = x.transpose(-1, -2)
embeddings = x + self.position_embeddings
x = self.transformer_encoder(embeddings)
B, n_patch, hidden = x.shape
x = x.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, a, b)
return x