|
import re |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from collections import OrderedDict |
|
|
|
from torch import Tensor |
|
from torch.jit.annotations import List |
|
|
|
|
|
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161'] |
|
|
|
model_urls = { |
|
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth', |
|
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth', |
|
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth', |
|
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth', |
|
} |
|
|
|
|
|
class _DenseLayer(nn.Module): |
|
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=False): |
|
super(_DenseLayer, self).__init__() |
|
self.add_module('norm1', nn.BatchNorm2d(num_input_features)), |
|
self.add_module('relu1', nn.ReLU(inplace=True)), |
|
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * |
|
growth_rate, kernel_size=1, stride=1, |
|
bias=False)), |
|
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), |
|
self.add_module('relu2', nn.ReLU(inplace=True)), |
|
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, |
|
kernel_size=3, stride=1, padding=1, |
|
bias=False)), |
|
self.drop_rate = float(drop_rate) |
|
self.memory_efficient = memory_efficient |
|
|
|
def bn_function(self, inputs): |
|
|
|
concated_features = torch.cat(inputs, 1) |
|
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) |
|
return bottleneck_output |
|
|
|
|
|
def any_requires_grad(self, input): |
|
|
|
for tensor in input: |
|
if tensor.requires_grad: |
|
return True |
|
return False |
|
|
|
@torch.jit.unused |
|
def call_checkpoint_bottleneck(self, input): |
|
|
|
def closure(*inputs): |
|
return self.bn_function(inputs) |
|
|
|
return cp.checkpoint(closure, *input) |
|
|
|
@torch.jit._overload_method |
|
def forward(self, input): |
|
|
|
pass |
|
|
|
@torch.jit._overload_method |
|
def forward(self, input): |
|
|
|
pass |
|
|
|
|
|
|
|
def forward(self, input): |
|
if isinstance(input, Tensor): |
|
prev_features = [input] |
|
else: |
|
prev_features = input |
|
|
|
if self.memory_efficient and self.any_requires_grad(prev_features): |
|
if torch.jit.is_scripting(): |
|
raise Exception("Memory Efficient not supported in JIT") |
|
|
|
bottleneck_output = self.call_checkpoint_bottleneck(prev_features) |
|
else: |
|
bottleneck_output = self.bn_function(prev_features) |
|
|
|
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output))) |
|
if self.drop_rate > 0: |
|
new_features = F.dropout(new_features, p=self.drop_rate, |
|
training=self.training) |
|
return new_features |
|
|
|
|
|
class _DenseBlock(nn.ModuleDict): |
|
_version = 2 |
|
|
|
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=False): |
|
super(_DenseBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = _DenseLayer( |
|
num_input_features + i * growth_rate, |
|
growth_rate=growth_rate, |
|
bn_size=bn_size, |
|
drop_rate=drop_rate, |
|
memory_efficient=memory_efficient, |
|
) |
|
self.add_module('denselayer%d' % (i + 1), layer) |
|
|
|
def forward(self, init_features): |
|
features = [init_features] |
|
for name, layer in self.items(): |
|
new_features = layer(features) |
|
features.append(new_features) |
|
return torch.cat(features, 1) |
|
|
|
|
|
class _Transition(nn.Sequential): |
|
def __init__(self, num_input_features, num_output_features): |
|
super(_Transition, self).__init__() |
|
self.add_module('norm', nn.BatchNorm2d(num_input_features)) |
|
self.add_module('relu', nn.ReLU(inplace=True)) |
|
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, |
|
kernel_size=1, stride=1, bias=False)) |
|
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) |
|
|
|
|
|
class DenseNet(nn.Module): |
|
r"""Densenet-BC model class, based on |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
growth_rate (int) - how many filters to add each layer (`k` in paper) |
|
block_config (list of 4 ints) - how many layers in each pooling block |
|
num_init_features (int) - the number of filters to learn in the first convolution layer |
|
bn_size (int) - multiplicative factor for number of bottle neck layers |
|
(i.e. bn_size * k features in the bottleneck layer) |
|
drop_rate (float) - dropout rate after each dense layer |
|
num_classes (int) - number of classification classes |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
|
|
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), |
|
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, memory_efficient=False): |
|
|
|
super(DenseNet, self).__init__() |
|
|
|
|
|
self.features = nn.Sequential(OrderedDict([ |
|
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, |
|
padding=3, bias=False)), |
|
('norm0', nn.BatchNorm2d(num_init_features)), |
|
('relu0', nn.ReLU(inplace=True)), |
|
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), |
|
])) |
|
|
|
|
|
num_features = num_init_features |
|
for i, num_layers in enumerate(block_config): |
|
block = _DenseBlock( |
|
num_layers=num_layers, |
|
num_input_features=num_features, |
|
bn_size=bn_size, |
|
growth_rate=growth_rate, |
|
drop_rate=drop_rate, |
|
memory_efficient=memory_efficient |
|
) |
|
self.features.add_module('denseblock%d' % (i + 1), block) |
|
num_features = num_features + num_layers * growth_rate |
|
if i != len(block_config) - 1: |
|
trans = _Transition(num_input_features=num_features, |
|
num_output_features=num_features // 2) |
|
self.features.add_module('transition%d' % (i + 1), trans) |
|
num_features = num_features // 2 |
|
|
|
|
|
self.features.add_module('norm5', nn.BatchNorm2d(num_features)) |
|
|
|
|
|
self.classifier = nn.Linear(num_features, num_classes) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
features = self.features(x) |
|
out = F.relu(features, inplace=True) |
|
out = F.adaptive_avg_pool2d(out, (1, 1)) |
|
out = torch.flatten(out, 1) |
|
out = self.classifier(out) |
|
return out |
|
|
|
|
|
def _load_state_dict(model, model_url, progress, flag): |
|
|
|
|
|
|
|
|
|
pattern = re.compile( |
|
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') |
|
if flag == "densenet161": |
|
state_dict = torch.load(r'pretrained_models/densenet161-8d451a50.pth') |
|
else: |
|
state_dict = load_state_dict_from_url(model_url, progress=progress) |
|
for key in list(state_dict.keys()): |
|
res = pattern.match(key) |
|
if res: |
|
new_key = res.group(1) + res.group(2) |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
model.load_state_dict(state_dict) |
|
|
|
|
|
def _densenet(arch, growth_rate, block_config, num_init_features, pretrained, progress, |
|
**kwargs): |
|
model = DenseNet(growth_rate, block_config, num_init_features, **kwargs) |
|
if pretrained: |
|
if arch == 'densenet161': |
|
_load_state_dict(model, model_urls[arch], progress, 'densenet161') |
|
else: |
|
_load_state_dict(model, model_urls[arch], progress, 0) |
|
return model |
|
|
|
|
|
def densenet121(pretrained=False, progress=True, **kwargs): |
|
r"""Densenet-121 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
|
|
def densenet161(pretrained=False, progress=True, **kwargs): |
|
r"""Densenet-161 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
|
|
def densenet169(pretrained=False, progress=True, **kwargs): |
|
r"""Densenet-169 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
|
|
def densenet201(pretrained=False, progress=True, **kwargs): |
|
r"""Densenet-201 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress, |
|
**kwargs) |