Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,20 @@
|
|
1 |
-
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
from
|
6 |
from PIL import Image
|
7 |
from TranSalNet_Res import TranSalNet
|
8 |
-
import torch.nn as nn
|
9 |
from utils.data_process import preprocess_img, postprocess_img
|
10 |
|
|
|
|
|
|
|
11 |
device = torch.device('cpu')
|
12 |
model = TranSalNet()
|
13 |
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
17 |
-
import cv2
|
18 |
-
import numpy as np
|
19 |
-
|
20 |
def count_and_label_red_patches(heatmap, threshold=200):
|
21 |
red_mask = heatmap[:, :, 2] > threshold
|
22 |
contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
@@ -58,46 +56,49 @@ def count_and_label_red_patches(heatmap, threshold=200):
|
|
58 |
|
59 |
return original_image, len(contours)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
st.write('Upload an image for saliency detection:')
|
64 |
-
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
65 |
-
|
66 |
-
if uploaded_image:
|
67 |
-
image = Image.open(uploaded_image)
|
68 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
img = np.array(img)
|
73 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Convert to BGR color space
|
74 |
-
img = np.array(img) / 255.
|
75 |
-
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
|
76 |
-
img = torch.from_numpy(img)
|
77 |
-
img = img.type(torch.FloatTensor).to(device)
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
b, g, r = cv2.split(enhanced_image)
|
88 |
-
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
89 |
-
b_enhanced = clahe.apply(b)
|
90 |
-
enhanced_image = cv2.merge((b_enhanced, g, r))
|
91 |
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
st.success('Saliency detection complete. Result saved as "example/result15.png".')
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from fastapi import FastAPI, UploadFile, File
|
5 |
from PIL import Image
|
6 |
from TranSalNet_Res import TranSalNet
|
|
|
7 |
from utils.data_process import preprocess_img, postprocess_img
|
8 |
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
device = torch.device('cpu')
|
13 |
model = TranSalNet()
|
14 |
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
|
15 |
model.to(device)
|
16 |
model.eval()
|
17 |
|
|
|
|
|
|
|
18 |
def count_and_label_red_patches(heatmap, threshold=200):
|
19 |
red_mask = heatmap[:, :, 2] > threshold
|
20 |
contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
56 |
|
57 |
return original_image, len(contours)
|
58 |
|
59 |
+
def process_image(image: Image.Image) -> np.ndarray:
|
60 |
+
img = image.resize((384, 288))
|
61 |
+
img = np.array(img)
|
62 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Convert to BGR color space
|
63 |
+
img = np.array(img) / 255.
|
64 |
+
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
|
65 |
+
img = torch.from_numpy(img)
|
66 |
+
img = img.type(torch.FloatTensor).to(device)
|
67 |
|
68 |
+
pred_saliency = model(img).squeeze().detach().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
heatmap = (pred_saliency * 255).astype(np.uint8)
|
71 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Use a blue colormap (JET)
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
heatmap = cv2.resize(heatmap, (image.width, image.height))
|
74 |
|
75 |
+
enhanced_image = np.array(image)
|
76 |
+
b, g, r = cv2.split(enhanced_image)
|
77 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
78 |
+
b_enhanced = clahe.apply(b)
|
79 |
+
enhanced_image = cv2.merge((b_enhanced, g, r))
|
80 |
|
81 |
+
alpha = 0.7
|
82 |
+
blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)
|
83 |
|
84 |
+
original_image, num_red_patches = count_and_label_red_patches(heatmap)
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Save processed image (optional)
|
87 |
+
cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
|
88 |
|
89 |
+
return blended_img
|
90 |
|
91 |
+
@app.post("/process_image")
|
92 |
+
async def process_uploaded_image(file: UploadFile = File(...)):
|
93 |
+
try:
|
94 |
+
contents = await file.read()
|
95 |
+
image = Image.open(io.BytesIO(contents))
|
96 |
+
except Exception as e:
|
97 |
+
raise HTTPException(status_code=400, detail=f"Error opening image: {str(e)}")
|
98 |
|
99 |
+
try:
|
100 |
+
processed_image = process_image(image)
|
101 |
+
return StreamingResponse(io.BytesIO(cv2.imencode('.png', processed_image)[1].tobytes()), media_type="image/png")
|
102 |
|
103 |
+
except Exception as e:
|
104 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
|