File size: 3,862 Bytes
146664f
cf8f583
 
00b33b8
 
cf8f583
 
00b33b8
146664f
00b33b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f1c9c
00b33b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac2d1d
 
00b33b8
 
 
 
c61a191
00b33b8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import torch
from PIL import Image
# from PIL import ImageDraw
# from PIL import ImageFont
import cv2
import numpy as np
import argparse

def parse_args(known=False):
  parser = argparse.ArgumentParser(description="Object Counting v1.0")
  parser.add_argument(
      "--yolov5_path",
      "-yp",
      default="ultralytics/yolov5",
      type=str,
      help="yolov5 path",
  )
  parser.add_argument(
      "--model_path",
      "-mp",
      default="model/yolov5n_rebar_kaggle.pt",
      type=str,
      help="model path",
  )
  parser.add_argument(
      "--nms_conf",
      "-conf",
      default=0.25,
      type=float,
      help="model NMS confidence threshold",
  )
  parser.add_argument(
      "--nms_iou", 
      "-iou", 
      default=0.1, 
      type=float, 
      help="model NMS IoU threshold"
  )
  parser.add_argument(
      "--device",
      "-dev",
      default="cpu",
      type=str,
      help="cuda or cpu",
  )
  parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
  parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")

  args = parser.parse_known_args()[0] if known else parser.parse_args()
  return args

def image_roi(im):
  mask = np.array(im["mask"])
  mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
  contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  if contours:
    mask = np.zeros(mask.shape, np.uint8)
    cnt = contours[0]
    mask = cv2.drawContours(mask, [cnt], 0, 255, -1)
    im = np.array(im["image"])
    im = cv2.bitwise_and(im, im, mask=mask)
    im = Image.fromarray(im)
  else:
    im = im["image"] 
  return im

def yolo(im, conf, iou, size):

  global model
  if im is None:
    print ("No image")
    return None, None
  im = image_roi(im)
  model.conf = conf
  model.iou = iou
  results = model(im, size=size)  # custom inference size
  output_im = np.array(im)

  pred = results.pandas().xyxy[0]
  counting = pred.shape[0]
  text = f"{counting} objects"
  for index, row in pred.iterrows():
    cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1)

  return Image.fromarray(output_im), text


def main(args):
  gr.close_all()

  global model
  yolo_path = args.yolov5_path
  model_path = args.model_path
  nms_conf = args.nms_conf
  nms_iou = args.nms_iou
  device = args.device
  inference_size = args.inference_size
  slider_step = args.slider_step

  model = torch.hub.load(yolo_path, 'custom', path=model_path, device=device)
  inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil")
  inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres")
  inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres")
  inputs_size = gr.Slider(384, 1536, step=128, value=inference_size, label="Inference Size")
  inputs = [inputs_image, inputs_conf, inputs_iou, inputs_size]

  outputs_image = gr.outputs.Image(type="pil", label="Output Image")
  outputs_text = gr.Textbox(label="Number of objects")
  outputs = [outputs_image, outputs_text]

  title = "OBJECT COUNTING DEMO"
  description = "Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image."
  article = "<p style='text-align: center'>Counting objects in image</a></p>"
  examples = [['./images/S__275668998.jpg'], ['./images/S__275669003.jpg'], ['./images/S__275669004.jpg']]

  gr.Interface(fn=yolo, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, analytics_enabled=False).launch(
      debug=True)#, share=True)


if __name__ == "__main__":
    args = parse_args()
    main(args)