ortha / mixofshow /pipelines /pipeline_edlora.py
ujin-song's picture
upload mixofshow and orthogonal_mats folder
8e12b4e verified
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from diffusers import StableDiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from einops import rearrange
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer
from mixofshow.models.edlora import (revise_edlora_unet_attention_controller_forward,
revise_edlora_unet_attention_forward)
def bind_concept_prompt(prompts, new_concept_cfg):
if isinstance(prompts, str):
prompts = [prompts]
new_prompts = []
for prompt in prompts:
prompt = [prompt] * 16
for concept_name, new_token_cfg in new_concept_cfg.items():
prompt = [
p.replace(concept_name, new_name) for p, new_name in zip(prompt, new_token_cfg['concept_token_names'])
]
new_prompts.extend(prompt)
return new_prompts
class EDLoRAPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker=None,
feature_extractor=None,
requires_safety_checker: bool = False,
):
if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1:
deprecation_message = (
f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
' file'
)
deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config['steps_offset'] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True:
deprecation_message = (
f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`.'
' `clip_sample` should be set to False in the configuration file. Please make sure to update the'
' config accordingly as not setting `clip_sample` in the config might lead to incorrect results in'
' future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very'
' nice if you could open a Pull request for the `scheduler/scheduler_config.json` file'
)
deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config['clip_sample'] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse('0.9.0.dev0')
is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
'The configuration file of the unet has set the default `sample_size` to smaller than'
' 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the'
' following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-'
' CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5'
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
' configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`'
' in the config might lead to incorrect results in future versions. If you have downloaded this'
' checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for'
' the `unet/config.json` file'
)
deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config['sample_size'] = 64
unet._internal_dict = FrozenDict(new_config)
revise_edlora_unet_attention_forward(unet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.new_concept_cfg = None
def set_new_concept_cfg(self, new_concept_cfg=None):
self.new_concept_cfg = new_concept_cfg
def set_controller(self, controller):
self.controller = controller
revise_edlora_unet_attention_controller_forward(self.unet, controller)
def _encode_prompt(self,
prompt,
new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None
):
assert num_images_per_prompt == 1, 'only support num_images_per_prompt=1 now'
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_extend = bind_concept_prompt(prompt, new_concept_cfg)
text_inputs = self.tokenizer(
prompt_extend,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt',
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = prompt_embeds.shape
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [''] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !='
f' {type(prompt)}.')
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:'
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
' the batch size of `prompt`.')
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding='max_length',
max_length=seq_len,
truncation=True,
return_tensors='pt',
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = 'pil',
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt, this support pplus and edlora (layer-wise embedding)
assert self.new_concept_cfg is not None
prompt_embeds = self._encode_prompt(
prompt,
self.new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if hasattr(self, 'controller'):
dtype = latents.dtype
latents = self.controller.step_callback(latents)
latents = latents.to(dtype)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == 'latent':
image = latents
elif output_type == 'pil':
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# Offload last model to CPU
if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)