umairrrkhan's picture
Update app.py
fa7a443 verified
raw
history blame
3.45 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class TextGenerationBot:
def __init__(self, model_name="umairrrkhan/english-text-generation"):
self.model_name = model_name
self.model = None
self.tokenizer = None
self.setup_model()
def setup_model(self):
"""
Load the model and tokenizer, and ensure pad_token and pad_token_id are set.
"""
self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# Ensure tokenizer has a pad token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Ensure model config has pad_token_id
if self.model.config.pad_token_id is None:
self.model.config.pad_token_id = self.tokenizer.pad_token_id
def generate_text(self, input_text, temperature=0.7, max_length=100):
"""
Generate text based on user input.
"""
# Tokenize input
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
# Generate output
with torch.no_grad():
outputs = self.model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length,
temperature=temperature,
top_k=50,
top_p=0.95,
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
# Decode and return the generated text
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def chat(self, message, history):
"""
Handle a chat conversation.
"""
if not history:
history = []
bot_response = self.generate_text(message)
history.append((message, bot_response))
return history, history
class ChatbotInterface:
def __init__(self):
self.bot = TextGenerationBot()
self.interface = None
self.setup_interface()
def setup_interface(self):
"""
Set up the Gradio interface for the chatbot.
"""
self.interface = gr.Interface(
fn=self.bot.chat,
inputs=[
gr.inputs.Textbox(label="Your Message"),
gr.inputs.State(label="Chat History"),
],
outputs=[
gr.outputs.Textbox(label="Bot Response"),
gr.outputs.State(label="Updated Chat History"),
],
title="AI Text Generation Chatbot",
description="Chat with an AI model trained on English text. Try asking questions or providing prompts!",
examples=[
["Tell me a short story about a brave knight"],
["What are the benefits of exercise?"],
["Write a poem about nature"],
],
)
def launch(self, **kwargs):
"""
Launch the Gradio interface.
"""
self.interface.launch(**kwargs)
def main():
chatbot = ChatbotInterface()
chatbot.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
)
if __name__ == "__main__":
main()