umarigan's picture
Update app.py
5f73d00 verified
raw
history blame
6.57 kB
import streamlit as st
import pandas as pd
import spacy
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io
def chunk_text(text, chunk_size=128):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > chunk_size:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
st.set_page_config(layout="wide")
# Function to read text from uploaded file
def read_file(file):
if file.type == "text/plain":
return file.getvalue().decode("utf-8")
elif file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
return " ".join(page.extract_text() for page in pdf_reader.pages)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = docx.Document(io.BytesIO(file.getvalue()))
return " ".join(paragraph.text for paragraph in doc.paragraphs)
else:
st.error("Unsupported file type")
return None
st.title("Turkish NER Models Testing")
model_list = [
'girayyagmur/bert-base-turkish-ner-cased',
'savasy/bert-base-turkish-ner-cased',
'xlm-roberta-large-finetuned-conll03-english',
'asahi417/tner-xlm-roberta-base-ontonotes5'
]
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
if input_method == "Write or Paste New Text":
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
if uploaded_file is not None:
input_text = read_file(uploaded_file)
if input_text:
st.text_area("Extracted Text", input_text, height=128)
else:
input_text = ""
@st.cache_resource
def setModel(model_checkpoint, aggregation):
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
@st.cache_resource
def entity_comb(output):
output_comb = []
for ind, entity in enumerate(output):
if ind == 0:
output_comb.append(entity)
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
output_comb[-1]["word"] += output[ind]["word"]
output_comb[-1]["end"] = output[ind]["end"]
else:
output_comb.append(entity)
return output_comb
def create_masked_text(input_text, entities):
# Create the mask dictionary
mask_dict = create_mask_dict(entities)
masked_text = input_text
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
# Replace the entity with its entity group from the mask dictionary
masked_text = (
masked_text[:entity['start']] +
f"<{mask_dict[entity['word']]}> " + # Use angle brackets for clarity
masked_text[entity['end']:]
)
return masked_text
def create_masked_text(input_text, entities, mask_dict):
masked_text = input_text
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
masked_text = masked_text[:entity['start']] + mask_dict[entity['word']] + masked_text[entity['end']:]
return masked_text
Run_Button = st.button("Run")
if Run_Button and input_text:
ner_pipeline = setModel(model_checkpoint, aggregation)
# Chunk the input text
chunks = chunk_text(input_text)
# Process each chunk
all_outputs = []
for i, chunk in enumerate(chunks):
output = ner_pipeline(chunk)
# Adjust start and end positions for entities in chunks after the first
if i > 0:
offset = len(' '.join(chunks[:i])) + 1
for entity in output:
entity['start'] += offset
entity['end'] += offset
all_outputs.extend(output)
# Combine entities
output_comb = entity_comb(all_outputs)
# Create mask dictionary
mask_dict = create_mask_dict(output_comb)
masked_text = create_masked_text(input_text, output_comb, mask_dict)
# Apply masking and add masked_word column
for entity in output_comb:
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
entity['masked_word'] = mask_dict.get(entity['word'], entity['word'])
else:
entity['masked_word'] = entity['word']
print("output_comb", output_comb)
#df = pd.DataFrame.from_dict(output_comb)
#cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
#df_final = df[cols_to_keep].loc[:,~df.columns.duplicated()].copy()
#st.subheader("Recognized Entities")
#st.dataframe(df_final)
# Spacy display logic with entity numbering
spacy_display = {"ents": [], "text": input_text, "title": None}
for entity in output_comb:
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
label = f"{entity['entity_group']}_{mask_dict[entity['word']].split('_')[1]}"
else:
label = entity['entity_group']
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label})
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
st.write(html, unsafe_allow_html=True)
st.subheader("Masking Dictionary")
st.json(mask_dict)
st.subheader("Masked Text Preview")
st.text(masked_text)